Fabrication of nickel oxide-titanium dioxide/reduced graphene oxide nanocomposites for developing asymmetric supercapacitor

被引:8
作者
El-Monem, Muhammad Abd [1 ,2 ]
Khairy, Mohamed [3 ]
Mahmoud, Khaled G. [3 ]
Abdel-Ghany, A. M. [2 ]
Ebnalwaled, A. A. [4 ]
Ibrahim, E. M. M. [1 ]
机构
[1] Sohag Univ, Fac Sci, Phys Dept, Sohag 82524, Egypt
[2] Sinai Univ, Fac Engn, Basic Sci Dept, North Sinai, Egypt
[3] Sohag Univ, Fac Sci, Chem Dept, Sohag 82524, Egypt
[4] South Valley Univ, Fac Sci, Phys Dept, Elect & Nano Devices Lab, Qena 83523, Egypt
关键词
ELECTROCHEMICAL PERFORMANCE; STRUCTURAL SUPERCAPACITORS; NIO/TIO2; NANOCOMPOSITES; PHOTOCATALYTIC ACTIVITY; SOLVOTHERMAL SYNTHESIS; ELECTRODE MATERIAL; CARBON NANOTUBES; ANODE MATERIALS; DOPED CARBON; COMPOSITES;
D O I
10.1007/s10853-024-09750-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nickel oxide-titanium dioxide/reduced graphene oxide (NiOTiO2/rGO) nanocomposites were synthesized for the first time using a simple solvothermal method for asymmetric supercapacitor applications. Crystalline NiO and TiO2 nanoparticles were dispersed uniformly on different ratios of rGO multilayers. The specific capacitance was enhanced significantly with an increase in the ratio of rGO. The electrochemical performance of the prepared composites was evaluated in 1.0 M KOH solution. The NTG10 composite showed the highest specific capacitance among all the samples, reaching 793.6 F g-1 at a current density of 5 A g-1 with capacity retention of 89.37% of its initial specific capacitance over 5000 cycles. The suggested electrode achieved a maximum energy density of 33.4 Wh Kg-1 at a power density of 1377 W Kg-1. This enhanced storage performance is attributed to the synergistic combination of NiO, TiO2, and rGO materials which offers superior electrical conductivity, and pseudocapacitive charge-storage mechanisms. The results indicate that NiOTiO2/rGO nanocomposite is a promising electrode material for supercapacitor applications.
引用
收藏
页码:8987 / 9002
页数:16
相关论文
共 81 条
[1]   Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles [J].
Abbas, Zareen ;
Holmberg, Jenny Perez ;
Hellstrom, Anna Karin ;
Hagstrom, Magnus ;
Bergenholtz, Johan ;
Hassellov, Martin ;
Ahlberg, Elisabet .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 384 (1-3) :254-261
[2]   Structure and AC conductivity of zinc and nickel-doped TiO2nanocomposite synthesized by simple incipient wet impregnation method [J].
Abdel-Baset, T. A. ;
Bashal, Ali H. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (21) :18533-18540
[3]   Flexible supercapacitor electrodes based on TiO2/rGO/TiO2 sandwich type hybrids [J].
Agharezaei, Parastoo ;
Abdizadeh, Hossein ;
Golobostanfard, Mohammad Reza .
CERAMICS INTERNATIONAL, 2018, 44 (04) :4132-4141
[4]   Synthesis of Titanium Dioxide (TiO2)/Reduced Graphene Oxide (rGO) thin film composite by spray pyrolysis technique and its physical properties [J].
AlShammari, A. S. ;
Halim, M. M. ;
Yam, F. K. ;
Kaus, N. H. Mohd .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 116
[5]   Preparation and Improved Capacitive Behavior of NiO/TiO2 Nanocomposites as Electrode Material for Supercapacitor [J].
Anandhi, Palani ;
Kumar, Veerabadran Jawahar Senthil ;
Harikrishnan, Santhanam .
CURRENT NANOSCIENCE, 2020, 16 (01) :79-85
[6]   Silver nanoparticles decorated on the surface of reduced graphene oxide coated titanium oxide nanocomposite for enhanced electrochemical supercapacitance performance [J].
Ansari, Akhalakur Rahman ;
Ansari, Sajid Ali ;
Parveen, Nazish ;
Ansari, Mohammad Omaish ;
Osman, Zurina .
IONICS, 2022, 28 (10) :4793-4804
[7]   CHARACTERIZATION BY IMPEDANCE SPECTROSCOPY OF A POLYMER-BASED SUPERCAPACITOR [J].
ARBIZZANI, C ;
MASTRAGOSTINO, M ;
MENEGHELLO, L .
ELECTROCHIMICA ACTA, 1995, 40 (13-14) :2223-2228
[8]   Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications [J].
Bonomo, Matteo ;
Dini, Danilo ;
Decker, Franco .
FRONTIERS IN CHEMISTRY, 2018, 6
[9]   Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO2 nanotubes [J].
Cai, Hua ;
Yang, Qin ;
Hu, Zhigao ;
Duan, Zhihua ;
You, Qinghu ;
Sun, Jian ;
Xu, Ning ;
Wu, Jiada .
APPLIED PHYSICS LETTERS, 2014, 104 (05)
[10]   Nickel-decorated TiO2 nanotube arrays as a self-supporting cathode for lithium-sulfur batteries [J].
Chen, Yuming ;
Tang, Wenhao ;
Ma, Jingru ;
Ge, Ben ;
Wang, Xiangliang ;
Wang, Yufen ;
Ren, Pengfei ;
Liu, Ruiping .
FRONTIERS OF MATERIALS SCIENCE, 2020, 14 (03) :266-274