De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae using metabolic pathway synthases from blueberry

被引:0
|
作者
Mei, Xuefeng [1 ]
Hua, Deping [1 ]
Liu, Na [1 ]
Zhang, Lilin [1 ]
Zhao, Xiaowen [2 ]
Tian, Yujing [1 ]
Zhao, Baiping [1 ]
Huang, Jinhai [1 ]
Zhang, Lei [1 ]
机构
[1] Tianjin Univ, Fac Med, Sch Life Sci, Tianjin 300072, Peoples R China
[2] Novogene Bioinformat Inst, Beijing 100015, Peoples R China
关键词
Anthocyanins; Blueberry; Saccharomyces cerevisiae; De novo synthesis; YEAST;
D O I
10.1186/s12934-024-02500-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. Results In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. Conclusions We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae
    Eichenberger, Michael
    Hansson, Anders
    Fischer, David
    Duerr, Lara
    Naesby, Michael
    FEMS YEAST RESEARCH, 2018, 18 (04)
  • [2] Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae
    Wang, Siyu
    Xu, Xianhao
    Lv, Xueqin
    Liu, Yanfeng
    Li, Jianghua
    Du, Guocheng
    Liu, Long
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [3] De Novo Biosynthesis of Curcumin in Saccharomyces cerevisiae
    Rainha, Joao
    Rodrigues, Joana L.
    Rodrigues, Ligia R.
    ACS SYNTHETIC BIOLOGY, 2024, 13 (06): : 1727 - 1736
  • [4] De novo biosynthesis of liquiritin in Saccharomyces cerevisiae
    Yin, Yan
    Li, Yanpeng
    Jiang, Dan
    Zhang, Xianan
    Gao, Wei
    Liu, Chunsheng
    ACTA PHARMACEUTICA SINICA B, 2020, 10 (04) : 711 - 721
  • [5] De novo biosynthesis of liquiritin in Saccharomyces cerevisiae
    Yan Yin
    Yanpeng Li
    Dan Jiang
    Xianan Zhang
    Wei Gao
    Chunsheng Liu
    Acta Pharmaceutica Sinica B, 2020, 10 (04) : 711 - 721
  • [6] De Novo Biosynthesis of Dihydroquercetin in Saccharomyces cerevisiae
    Li, Hongbiao
    Zhang, Shuai
    Dong, Zilong
    Shan, Xiaoyu
    Zhou, Jingwen
    Zeng, Weizhu
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (35) : 19436 - 19446
  • [7] De Novo Biosynthesis of Polydatin in Saccharomyces cerevisiae
    Liu, Tian
    Liu, Yuqian
    Li, Lan
    Liu, Xiaonan
    Guo, Zhaokuan
    Cheng, Jian
    Zhu, Xiaoxi
    Lu, Lina
    Zhang, Junlin
    Fan, Guanwei
    Xie, Nengzhong
    Lu, Jian
    Jiang, Huifeng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (21) : 5917 - 5925
  • [8] De novo biosynthesis of carminic acid in Saccharomyces cerevisiae
    Zhang, Qian
    Wang, Xinglong
    Zeng, Weizhu
    Xu, Sha
    Li, Dong
    Yu, Shiqin
    Zhou, Jingwen
    METABOLIC ENGINEERING, 2023, 76 : 50 - 62
  • [9] De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae
    Tu, Shuai
    Xiao, Feng
    Mei, Chengyu
    Li, Shuang
    Qiao, Pei
    Huang, Ziyan
    He, Yan
    Gong, Zhixing
    Zhong, Weihong
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2023, 107 (12) : 3899 - 3909
  • [10] De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae
    Shuai Tu
    Feng Xiao
    Chengyu Mei
    Shuang Li
    Pei Qiao
    Ziyan Huang
    Yan He
    Zhixing Gong
    Weihong Zhong
    Applied Microbiology and Biotechnology, 2023, 107 : 3899 - 3909