Contextual quantum metrology

被引:0
|
作者
Jae, Jeongwoo [1 ,2 ]
Lee, Jiwon [1 ]
Kim, M. S. [3 ]
Lee, Kwang-Geol [1 ]
Lee, Jinhyoung [1 ,4 ]
机构
[1] Hanyang Univ, Dept Phys, Seoul 04763, South Korea
[2] Samsung SDS, R&D Ctr, Seoul 05510, South Korea
[3] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[4] Korea Inst Sci & Technol KIST, Ctr Quantum Simulat, Seoul 02792, South Korea
基金
新加坡国家研究基金会; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
ENTANGLEMENT; LIGO;
D O I
10.1038/s41534-024-00862-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the contextuality of measurement selection can enhance the precision of quantum metrology with a simple linear optical experiment. Contextuality is a nonclassical property known as a resource for various quantum information processing tasks. Recent studies show that contextuality by anomalous weak values can be utilized to enhance metrological precision, unraveling the role of contextuality in quantum metrology. Our contextual quantum metrology (coQM) scheme can elevate the precision of the optical polarimetry as much as 6 times the precision limit given by the Quantum Fisher Information. We achieve the contextuality-enabled enhancement with two mutually complementary measurements, whereas, in the conventional method, some optimal measurements to achieve the precision limit are either theoretically challenging to find or experimentally infeasible to realize. These results highlight that the contextuality of measurement selection is applicable in practice for quantum metrology.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Effects of local decoherence on quantum critical metrology
    Chen, Chong
    Wang, Ping
    Liu, Ren-Bao
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [42] Random Bosonic States for Robust Quantum Metrology
    Oszmaniec, M.
    Augusiak, R.
    Gogolin, C.
    Kolodynski, J.
    Acin, A.
    Lewenstein, M.
    PHYSICAL REVIEW X, 2016, 6 (04):
  • [43] Quantum metrology with partially concurrent twisting and sensing
    Shen, Yi
    Zhou, Jungeng
    Huang, Jiahao
    Lee, Chaohong
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [44] Quantum Optical Technologies for Metrology, Sensing, and Imaging
    Dowling, Jonathan P.
    Seshadreesan, Kaushik P.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (12) : 2359 - 2370
  • [45] Quantum-enhanced metrology in cavity magnonics
    Wan, Qing-Kun
    Shi, Hai-Long
    Guan, Xi-Wen
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [46] Sub-Planck structures and Quantum Metrology\
    Panigrahi, Prasanta K.
    Kumar, Abhijeet
    Roy, Utpal
    Ghosh, Suranjana
    75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS, 2011, 1384 : 84 - 90
  • [47] Quantum information processing and metrology with trapped ions
    Wineland, D. J.
    Leibfried, D.
    LASER PHYSICS LETTERS, 2011, 8 (03) : 175 - 188
  • [48] Towards practical quantum metrology with photon counting
    Matthews, Jonathan C. F.
    Zhou, Xiao-Qi
    Cable, Hugo
    Shadbolt, Peter J.
    Saunders, Dylan J.
    Durkin, Gabriel A.
    Pryde, Geoff J.
    O'Brien, Jeremy L.
    NPJ QUANTUM INFORMATION, 2016, 2
  • [49] Quantum-Enhanced Metrology with Network States
    Yang, Yuxiang
    Yadin, Benjamin
    Xu, Zhen-Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [50] Efficient tools for quantum metrology with uncorrelated noise
    Kolodynski, Jan
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2013, 15