Contextual quantum metrology

被引:0
|
作者
Jae, Jeongwoo [1 ,2 ]
Lee, Jiwon [1 ]
Kim, M. S. [3 ]
Lee, Kwang-Geol [1 ]
Lee, Jinhyoung [1 ,4 ]
机构
[1] Hanyang Univ, Dept Phys, Seoul 04763, South Korea
[2] Samsung SDS, R&D Ctr, Seoul 05510, South Korea
[3] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[4] Korea Inst Sci & Technol KIST, Ctr Quantum Simulat, Seoul 02792, South Korea
基金
新加坡国家研究基金会; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
ENTANGLEMENT; LIGO;
D O I
10.1038/s41534-024-00862-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the contextuality of measurement selection can enhance the precision of quantum metrology with a simple linear optical experiment. Contextuality is a nonclassical property known as a resource for various quantum information processing tasks. Recent studies show that contextuality by anomalous weak values can be utilized to enhance metrological precision, unraveling the role of contextuality in quantum metrology. Our contextual quantum metrology (coQM) scheme can elevate the precision of the optical polarimetry as much as 6 times the precision limit given by the Quantum Fisher Information. We achieve the contextuality-enabled enhancement with two mutually complementary measurements, whereas, in the conventional method, some optimal measurements to achieve the precision limit are either theoretically challenging to find or experimentally infeasible to realize. These results highlight that the contextuality of measurement selection is applicable in practice for quantum metrology.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Multiparameter Gaussian quantum metrology
    Nichols, Rosanna
    Liuzzo-Scorpo, Pietro
    Knott, Paul A.
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [22] Quantum metrology from a quantum information science perspective
    Toth, Geza
    Apellaniz, Iagoba
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (42)
  • [23] Power of one bit of quantum information in quantum metrology
    Cable, Hugo
    Gu, Mile
    Modi, Kavan
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [24] Measure of bipartite correlation for quantum metrology
    Xing, Haijun
    Chen, Jinfu
    Fu, Libin
    PHYSICAL REVIEW A, 2019, 100 (04)
  • [25] Optimal metrology with programmable quantum sensors
    Marciniak, Christian D.
    Feldker, Thomas
    Pogorelov, Ivan
    Kaubruegger, Raphael
    Vasilyev, Denis V.
    van Bijnen, Rick
    Schindler, Philipp
    Zoller, Peter
    Blatt, Rainer
    Monz, Thomas
    NATURE, 2022, 603 (7902) : 604 - +
  • [26] Quantum Metrology Assisted by Machine Learning
    Huang, Jiahao
    Zhuang, Min
    Zhou, Jungeng
    Shen, Yi
    Lee, Chaohong
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [27] Quantum metrology with Dicke squeezed states
    Zhang, Z.
    Duan, L. M.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [28] Variational-state quantum metrology
    Koczor, Balint
    Endo, Suguru
    Jones, Tyson
    Matsuzaki, Yuichiro
    Benjamin, Simon C.
    NEW JOURNAL OF PHYSICS, 2020, 22 (08)
  • [29] Metrology-induced quantum nonlocality
    Khedif, Youssef
    Errehymy, Abdelghani
    Maroufi, Bouchra
    Daoud, Mohammed
    QUANTUM INFORMATION PROCESSING, 2025, 24 (01)
  • [30] Quantum metrology with unitary parametrization processes
    Liu, Jing
    Jing, Xiao-Xing
    Wang, Xiaoguang
    SCIENTIFIC REPORTS, 2015, 5