Wigner Analysis of Operators. Part II: Schrödinger Equations

被引:6
|
作者
Cordero, Elena [1 ]
Giacchi, Gianluca [2 ,3 ,4 ,5 ]
Rodino, Luigi [1 ]
机构
[1] Univ Torino, Dept Math, Turin, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
[3] Univ Lausanne, Lausanne, Switzerland
[4] Univ Vadois, Ctr Hosp, Lausanne, Switzerland
[5] Haute Ecole Specialisee Suisse Occidentale, Delemont, Switzerland
关键词
PHASE-SPACE SINGULARITIES; TIME-FREQUENCY ANALYSIS; WAVE-FRONT SET; SCHRODINGER-EQUATIONS; PSEUDODIFFERENTIAL-OPERATORS; GABOR SINGULARITIES; MODULATION SPACES; PROPAGATION; CONTINUITY; ALGEBRAS;
D O I
10.1007/s00220-024-04992-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the phase-space concentration of the so-called generalized metaplectic operators whose main examples are Schr & ouml;dinger equations with bounded perturbations. To reach this goal, we perform a so-called A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner analysis of the previous equations, as started in Part I, cf. Cordero and Rodino (Appl Comput Harmon Anal 58:85-123, 2022). Namely, the classical Wigner distribution is extended by considering a class of time-frequency representations constructed as images of metaplectic operators acting on symplectic matrices A is an element of S p ( 2 d , R ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\in Sp(2d,\mathbb {R})$$\end{document} . Sub-classes of these representations, related to covariant symplectic matrices, reveal to be particularly suited for the time-frequency study of the Schr & ouml;dinger evolution. This testifies the effectiveness of this approach for such equations, highlighted by the development of a related wave front set. We first study the properties of A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner representations and related pseudodifferential operators needed for our goal. This approach paves the way to new quantization procedures. As a byproduct, we introduce new quasi-algebras of generalized metaplectic operators containing Schr & ouml;dinger equations with more general potentials, extending the results contained in the previous works (Cordero et al. in J Math Pures Appl 99(2):219-233, 2013, J Math Phys 55(8):081506, 2014).
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [42] Geometric singular perturbation analysis to the coupled Schrödinger equations
    Li, Xiaowan
    Ji, Shuguan
    Applied Mathematics Letters, 2024, 148
  • [43] Weyl transforms and solutions to Schrödinger equations for time-dependent Hermite operators
    Toshinao Kagawa
    M. W. Wong
    Journal of Pseudo-Differential Operators and Applications, 2012, 3 : 31 - 48
  • [44] Attractors of nonautonomous Schrödinger equations
    Yu-rong L.
    Zeng-rong L.
    Yong-ai Z.
    Applied Mathematics and Mechanics, 2001, 22 (2) : 180 - 189
  • [45] Attractors of Nonautonomous Schrödinger Equations
    Yu-rong Liu
    Zeng-rong Liu
    Yong-ai Zheng
    Applied Mathematics and Mechanics, 2001, 22 : 180 - 189
  • [46] On the quasilinear Schrödinger equations on tori
    Iandoli, Felice
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1913 - 1930
  • [47] Schrödinger-Maxwell equations driven by mixed local-nonlocal operators
    Nicolò Cangiotti
    Maicol Caponi
    Alberto Maione
    Enzo Vitillaro
    Fractional Calculus and Applied Analysis, 2024, 27 : 677 - 705
  • [48] Geometric singular perturbation analysis to the coupled Schrödinger equations
    Li, Xiaowan
    Ji, Shuguan
    APPLIED MATHEMATICS LETTERS, 2024, 148
  • [49] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [50] FOURIER INTEGRAL OPERATORS. II
    Duistermaat, J. J.
    Hormander, L.
    ACTA MATHEMATICA, 1972, 128 (01) : 183 - 269