Wigner Analysis of Operators. Part II: Schrödinger Equations

被引:6
|
作者
Cordero, Elena [1 ]
Giacchi, Gianluca [2 ,3 ,4 ,5 ]
Rodino, Luigi [1 ]
机构
[1] Univ Torino, Dept Math, Turin, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
[3] Univ Lausanne, Lausanne, Switzerland
[4] Univ Vadois, Ctr Hosp, Lausanne, Switzerland
[5] Haute Ecole Specialisee Suisse Occidentale, Delemont, Switzerland
关键词
PHASE-SPACE SINGULARITIES; TIME-FREQUENCY ANALYSIS; WAVE-FRONT SET; SCHRODINGER-EQUATIONS; PSEUDODIFFERENTIAL-OPERATORS; GABOR SINGULARITIES; MODULATION SPACES; PROPAGATION; CONTINUITY; ALGEBRAS;
D O I
10.1007/s00220-024-04992-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the phase-space concentration of the so-called generalized metaplectic operators whose main examples are Schr & ouml;dinger equations with bounded perturbations. To reach this goal, we perform a so-called A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner analysis of the previous equations, as started in Part I, cf. Cordero and Rodino (Appl Comput Harmon Anal 58:85-123, 2022). Namely, the classical Wigner distribution is extended by considering a class of time-frequency representations constructed as images of metaplectic operators acting on symplectic matrices A is an element of S p ( 2 d , R ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\in Sp(2d,\mathbb {R})$$\end{document} . Sub-classes of these representations, related to covariant symplectic matrices, reveal to be particularly suited for the time-frequency study of the Schr & ouml;dinger evolution. This testifies the effectiveness of this approach for such equations, highlighted by the development of a related wave front set. We first study the properties of A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner representations and related pseudodifferential operators needed for our goal. This approach paves the way to new quantization procedures. As a byproduct, we introduce new quasi-algebras of generalized metaplectic operators containing Schr & ouml;dinger equations with more general potentials, extending the results contained in the previous works (Cordero et al. in J Math Pures Appl 99(2):219-233, 2013, J Math Phys 55(8):081506, 2014).
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Exactly Solvable Schrödinger Operators
    Jan Dereziński
    Michał Wrochna
    Annales Henri Poincaré, 2011, 12 : 397 - 418
  • [22] Correlation Inequalities for Schrödinger Operators
    Tadahiro Miyao
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [23] Resonance Theory for Schrödinger Operators
    O. Costin
    A. Soffer
    Communications in Mathematical Physics, 2001, 224 : 133 - 152
  • [24] Spectral identities for Schrödinger operators
    Guliyev, Namig J.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [25] Kernel estimates for Schrödinger operators
    G. Metafune
    D. Pallara
    A. Rhandi
    Journal of Evolution Equations, 2006, 6 : 433 - 457
  • [26] A Liouville property for Schrödinger operators
    Alexander Grigor'yan
    Wolfhard Hansen
    Mathematische Annalen, 1998, 312 : 659 - 716
  • [27] On Learning Rates and Schrödinger Operators
    Shi, Bin
    Su, Weijie J.
    Jordan, Michael I.
    Journal of Machine Learning Research, 2023, 24
  • [28] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    Letters in Mathematical Physics, 2021, 111
  • [29] Wigner measures and observability for the Schrödinger equation on the disk
    Nalini Anantharaman
    Matthieu Léautaud
    Fabricio Macià
    Inventiones mathematicae, 2016, 206 : 485 - 599
  • [30] Dynamical Analysis of Schrödinger Operators with Growing Sparse Potentials
    Serguei Tcheremchantsev
    Communications in Mathematical Physics, 2005, 253 : 221 - 252