Wigner Analysis of Operators. Part II: Schrödinger Equations

被引:6
|
作者
Cordero, Elena [1 ]
Giacchi, Gianluca [2 ,3 ,4 ,5 ]
Rodino, Luigi [1 ]
机构
[1] Univ Torino, Dept Math, Turin, Italy
[2] Univ Bologna, Dipartimento Matemat, Bologna, Italy
[3] Univ Lausanne, Lausanne, Switzerland
[4] Univ Vadois, Ctr Hosp, Lausanne, Switzerland
[5] Haute Ecole Specialisee Suisse Occidentale, Delemont, Switzerland
关键词
PHASE-SPACE SINGULARITIES; TIME-FREQUENCY ANALYSIS; WAVE-FRONT SET; SCHRODINGER-EQUATIONS; PSEUDODIFFERENTIAL-OPERATORS; GABOR SINGULARITIES; MODULATION SPACES; PROPAGATION; CONTINUITY; ALGEBRAS;
D O I
10.1007/s00220-024-04992-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the phase-space concentration of the so-called generalized metaplectic operators whose main examples are Schr & ouml;dinger equations with bounded perturbations. To reach this goal, we perform a so-called A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner analysis of the previous equations, as started in Part I, cf. Cordero and Rodino (Appl Comput Harmon Anal 58:85-123, 2022). Namely, the classical Wigner distribution is extended by considering a class of time-frequency representations constructed as images of metaplectic operators acting on symplectic matrices A is an element of S p ( 2 d , R ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}\in Sp(2d,\mathbb {R})$$\end{document} . Sub-classes of these representations, related to covariant symplectic matrices, reveal to be particularly suited for the time-frequency study of the Schr & ouml;dinger evolution. This testifies the effectiveness of this approach for such equations, highlighted by the development of a related wave front set. We first study the properties of A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} -Wigner representations and related pseudodifferential operators needed for our goal. This approach paves the way to new quantization procedures. As a byproduct, we introduce new quasi-algebras of generalized metaplectic operators containing Schr & ouml;dinger equations with more general potentials, extending the results contained in the previous works (Cordero et al. in J Math Pures Appl 99(2):219-233, 2013, J Math Phys 55(8):081506, 2014).
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Wigner analysis of operators. Part I: Pseudodifferential operators and wave fronts
    Cordero, Elena
    Rodino, Luigi
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 58 : 85 - 123
  • [2] POLYNOMIAL EXTENSION OPERATORS. PART II
    Demkowicz, Leszek
    Gopalakrishnan, Jayadeep
    Schoeberl, Joachim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) : 3293 - 3324
  • [3] Inequalities connected with averaging operators. Part II
    Fechner, Wiodzimierz
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (01): : 40 - 49
  • [4] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [5] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [6] On the spectrum of lattice schrödinger operators with deterministic potential (II)
    J. Bourgain
    Journal d’Analyse Mathématique, 2002, 88 : 221 - 254
  • [7] On neutral functional differential equations with causal operators. II
    Corduneanu, C
    Mahdavi, M
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING, 2000, 418 : 102 - 106
  • [8] Spectral analysis of a class of Schrödinger difference operators
    Ag. Kh. Khanmamedov
    G. M. Masmaliev
    Doklady Mathematics, 2011, 83 : 111 - 112
  • [9] Inverse problems for radial Schrödinger operators with the missing part of eigenvalues
    Xin-Jian Xu
    Chuan-Fu Yang
    Vjacheslav A. Yurko
    Ran Zhang
    Science China Mathematics, 2023, 66 : 1831 - 1848
  • [10] Moment analysis for localization in random Schrödinger operators
    Michael Aizenman
    Alexander Elgart
    Serguei Naboko
    Jeffrey H. Schenker
    Gunter Stolz
    Inventiones mathematicae, 2006, 163 : 343 - 413