Chromosome-level genome assembly of ridgetail white shrimp Exopalaemon carinicauda

被引:0
作者
Wang, Jiajia [1 ,2 ]
Lv, Jianjian [1 ,2 ]
Shi, Miao [3 ]
Ge, Qianqian [1 ,2 ]
Wang, Qiong [1 ,2 ]
He, Yuying [1 ,2 ]
Li, Jian [1 ,2 ]
Li, Jitao [1 ,2 ]
机构
[1] Chinese Acad Fishery Sci, Yellow Sea Fisheries Res Inst, State Key Lab Mariculture Biobreeding & Sustainab, Qingdao 266071, Shandong, Peoples R China
[2] Qingdao Marine Sci & Technol Ctr, Lab Marine Fisheries Sci & Food Prod Proc, Qingdao 266237, Shandong, Peoples R China
[3] Berry Genom Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
HI-C; ALIGNMENT; PREDICTION; PROVIDES; SYSTEM; ACCURATE; PROGRAM;
D O I
10.1038/s41597-024-03423-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exopalaemon carinicauda, a eurythermal and euryhaline shrimp, contributes one third of the total biomass production of polyculture ponds in eastern China and is considered as a potential ideal experimental animal for research on crustaceans. We conducted a high-quality chromosome-level genome assembly of E. carinicauda combining PacBio HiFi and Hi-C sequencing data. The total assembly size was 5.86 Gb, with a contig N50 of 235.52 kb and a scaffold N50 of 138.24 Mb. Approximately 95.29% of the assembled sequences were anchored onto 45 pseudochromosomes. BUSCO analysis revealed that 92.89% of 1,013 single-copy genes were highly conserved orthologs. A total of 44, 288 protein-coding genes were predicted, of which 70.53% were functionally annotated. Given its high heterozygosity (2.62%) and large proportion of repeat sequences (71.49%), it is one of the most complex genome assemblies. This chromosome-scale genome will be a valuable resource for future molecular breeding and functional genomics research on E. carinicauda.
引用
收藏
页数:9
相关论文
共 47 条
  • [1] ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
  • [2] [Anonymous], 2024, World Register of Marine Species
  • [3] [Anonymous], 2024, NCBI Sequence Read Archive
  • [4] [Anonymous], 2024, NCBI GenBank
  • [5] Chen Nansheng, 2004, Curr Protoc Bioinformatics, VChapter 4, DOI 10.1002/0471250953.bi0410s05
  • [6] De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds
    Dudchenko, Olga
    Batra, Sanjit S.
    Omer, Arina D.
    Nyquist, Sarah K.
    Hoeger, Marie
    Durand, Neva C.
    Shamim, Muhammad S.
    Machol, Ido
    Lander, Eric S.
    Aiden, Aviva Presser
    Aiden, Erez Lieberman
    [J]. SCIENCE, 2017, 356 (6333) : 92 - 95
  • [7] Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom
    Durand, Neva C.
    Robinson, James T.
    Shamim, Muhammad S.
    Machol, Ido
    Mesirov, Jill P.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL SYSTEMS, 2016, 3 (01) : 99 - 101
  • [8] Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments
    Durand, Neva C.
    Shamim, Muhammad S.
    Machol, Ido
    Rao, Suhas S. P.
    Huntley, Miriam H.
    Lander, Eric S.
    Aiden, Erez Lieberman
    [J]. CELL SYSTEMS, 2016, 3 (01) : 95 - 98
  • [9] LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons
    Ellinghaus, David
    Kurtz, Stefan
    Willhoeft, Ute
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [10] RepeatModeler2 for automated genomic discovery of transposable element families
    Flynn, Jullien M.
    Hubley, Robert
    Goubert, Clement
    Rosen, Jeb
    Clark, Andrew G.
    Feschotte, Cedric
    Smit, Arian F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9451 - 9457