Increasing returns and labor markets in a predator-prey model

被引:1
|
作者
Dosi, Giovanni [1 ]
Usula, Davide [1 ]
Virgillito, Maria Enrica [1 ]
机构
[1] Scuola Super Sant Anna, Inst Econ, Piazza Martiri Liberta 33, I-56127 Pisa, Italy
关键词
Capitalist system; Kaldor-Verdoorn law; Wage rigidity; Dissipative complex systems; C61; C63; E11; E12; E32; E37; E24; GROWTH; DEMAND; CYCLES;
D O I
10.1007/s00191-024-00861-x
中图分类号
F [经济];
学科分类号
02 ;
摘要
The purpose of this work is to study the joint interaction of three founding elements of modern capitalism, namely endogenous technical change, income distribution, and labor markets, within a low-dimensional nonlinear dynamic setup extending the Goodwin model. Going beyond the conservative structure typical of the predator-prey model, we insert an endogenous source of energy, namely a Kaldor-Verdoorn (KV) increasing returns specification, that feeds the dynamics of the system over the long run and in that incorporates a transition to an (anti)-dissipative framework. The qualitatively dynamics and ample array of topological structures reflect a wide range of Kaldorian stylized facts, as steady productivity growth and constant shares of income distribution. The intensity of learning regimes and wage sensitivity to unemployment allow to mimic some typical traits of both Competitive and Fordist regimes of accumulation, showing the relevance of the demand-side engine, represented by the KV law, within an overall supply-side framework. High degrees of learning regimes stabilize the system and bring it out of an oscillatory trap. Even under regimes characterized by low degrees of learning, wage rigidity is able to stabilize the business cycle fluctuations and exert a positive effect on productivity growth.
引用
收藏
页码:375 / 402
页数:28
相关论文
共 50 条
  • [1] Bifurcation analysis of the predator-prey model with the Allee effect in the predator
    Sen, Deeptajyoti
    Ghorai, Saktipada
    Banerjee, Malay
    Morozov, Andrew
    JOURNAL OF MATHEMATICAL BIOLOGY, 2022, 84 (1-2)
  • [2] Multiple Periodicity in a Predator-Prey Model with Prey Refuge
    Lu, Weijie
    Xia, Yonghui
    MATHEMATICS, 2022, 10 (03)
  • [3] Global dynamics of a delayed predator-prey model with stage structure for the predator and the prey
    Wang, Lingshu
    Feng, Guanghui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 3937 - 3949
  • [4] A Quasilinear Predator-Prey Model with Indirect Prey-Taxis
    Xing, Jie
    Zheng, Pan
    Pan, Xu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [5] Bifurcation analysis in a predator-prey model for the effect of delay in prey
    Wang, Qiubao
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2016, 9 (04)
  • [6] Derivation and Analysis of a Discrete Predator-Prey Model
    Streipert, Sabrina H.
    Wolkowicz, Gail S. K.
    Bohner, Martin
    BULLETIN OF MATHEMATICAL BIOLOGY, 2022, 84 (07)
  • [7] Pattern formation in a predator-prey diffusion model with stage structure for the predator
    Sun, Liangliang
    Fu, Shengmao
    Ma, Wenjun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 2988 - 3000
  • [8] Complex dynamics of a generalist predator-prey model with hunting cooperation in predator
    Mondal, Bapin
    Sarkar, Susmita
    Ghosh, Uttam
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 137 (01)
  • [9] A predator-prey model with strong Allee effect and disease in prey population
    Mondal, Sudeshna
    Maiti, Alakes
    Samanta, G. P.
    INTERNATIONAL JOURNAL OF ECOLOGICAL ECONOMICS & STATISTICS, 2019, 40 (02) : 92 - 112
  • [10] Dynamical analysis in a piecewise smooth predator-prey model with predator harvesting
    Hua, Duo
    Liu, Xingbo
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2023, 16 (06)