Eigenvalue analysis and applications of the Legendre dual-Petrov-Galerkin methods for initial value problems

被引:0
作者
Kong, Desong [1 ]
Shen, Jie [2 ]
Wang, Li-Lian [3 ]
Xiang, Shuhuang [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
中国国家自然科学基金;
关键词
Legendre dual Petrov-Galerkin methods; Bessel and generalised Bessel polynomials; Spectral method in time; Eigenvalue distributions; Matrix diagonalisation; QZ decomposition; SPECTRAL METHODS; TIME; SPACE; COLLOCATION; COMPUTATION; EQUATIONS; OPERATOR; ZEROS;
D O I
10.1007/s10444-024-10190-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulting from the Legendre dual-Petrov-Galerkin (LDPG) method for the mth-order initial value problem (IVP): u(m)(t)=sigma u(t),t is an element of(-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u<^>{(m)}(t)=\sigma u(t),\, t\in (-1,1)$$\end{document} with constant sigma not equal 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \not =0$$\end{document} and usual initial conditions at t=-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=-1,$$\end{document} are associated with the generalised Bessel polynomials (GBPs). In particular, we derive analytical formulae for the eigenvalues and eigenvectors in the cases m=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=1,2$$\end{document}. As a by-product, we are able to answer some open questions related to the collocation method at Legendre points (extensively studied in the 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Our results have direct bearing on the CFL conditions of time-stepping schemes with spectral or spectral-element discretisation in space. Moreover, we present two stable algorithms for computing zeros of the GBPs and develop a general space-time method for evolutionary PDEs. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time methods for some interesting examples of linear and nonlinear wave problems.
引用
收藏
页数:36
相关论文
共 33 条
[1]  
[Anonymous], 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[2]   On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation [J].
Boulmezaoud, T. Z. ;
Urquiza, J. M. .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (03) :307-345
[3]  
Canuto C., 1988, SPECTRAL METHODS FLU
[4]   A new property of a class of Jacobi polynomials [J].
Csordas, G ;
Charalambides, M ;
Waleffe, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3551-3560
[5]  
De Bruin M.G., 1981, Indag. Math., V43, P1
[6]  
Dubiner M., 1987, Journal of Scientific Computing, V2, P3, DOI 10.1007/BF01061510
[7]   THE SPECTRUM OF THE TSCHEBYSCHEV COLLOCATION OPERATOR FOR THE HEAT-EQUATION [J].
GOTTLIEB, D ;
LUSTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :909-921
[8]  
Gottlieb D., 1977, Numerical Analysis of Spectral Methods: Theory and Applications
[9]  
Grosswald E., 1978, Bessel polynomials, DOI [10.1007/BFb0063135, DOI 10.1007/BFB0063135]
[10]  
Hairer E., 2010, Springer Series in Computational Mathematics, V8, P528, DOI DOI 10.1007/978-3-540-78862-1