To study the dust removal efficiency and application range expansion of wet electrostatic precipitators, an experimental device was designed for surface-active agent synergistic charged water mist dust removal targeting iron ore dust, using surface-active agent-enhanced wetting, water film capture, and charged capture theories. The effects of wind speed, voltage, spray pressure, and grid number on dust removal performance were investigated. In the experiment, a series of composite surface-active agent solutions were tested, including 0.3% LABSA/0.5% X-100, 0.3% LABSA/0.5% AES, and 0.5% X-100/0.5% AES, for charged water mist dust removal. The results showed that composite electrostatic precipitators could improve dust removal efficiency while increasing treatment air volume. Wind speed was positively correlated with dust removal efficiency below 0.8m/s. The composite solution achieved the highest dust removal efficiency at a water pressure of 6MPa, with 0.3% LABSA/0.5% AES performing the best, increasing dust removal efficiency by 15.36% compared to water, with an average improvement of 11.73% for different water pressures. The dust removal efficiency of the composite electrostatic precipitator was positively correlated with voltage before 40kV, but decreased after due to corona discharge. The grid with a pore size of 40mesh had the highest dust removal efficiency. Among the composite solutions, 0.3% LABSA/0.5% AES achieved a dust removal efficiency of 96.74%, and reducing the pore size further decreased the dust removal efficiency.The stronger the wetting ability of the surface active agent on dust, the greater the improvement in dust removal efficiency when it is involved in the dust removal process. © 2023 Chinese Society for Environmental Sciences. All rights reserved.