A Clustering-Guided Contrastive Fusion for Multi-View Representation Learning

被引:19
|
作者
Ke, Guanzhou [1 ]
Chao, Guoqing [2 ]
Wang, Xiaoli [3 ]
Xu, Chenyang [4 ]
Zhu, Yongqi [1 ]
Yu, Yang [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Data Sci & Intelligent Decis Support, Beijing Inst Big Data Res, Beijing 100080, Peoples R China
[2] Harbin Inst Technol, Sch Comp Sci & Technol, Weihai 264209, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210000, Peoples R China
[4] Wuyi Univ, Fac Intelligent Mfg, Jiangmen 529000, Peoples R China
关键词
Task analysis; Semantics; Robustness; Representation learning; Image reconstruction; Data models; Learning systems; Multi-view representation learning; contrastive learning; fusion; clustering; incomplete view; ENHANCEMENT;
D O I
10.1109/TCSVT.2023.3300319
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-view representation learning aims to extract comprehensive information from multiple sources. It has achieved significant success in applications such as video understanding and 3D rendering. However, how to improve the robustness and generalization of multi-view representations from unsupervised and incomplete scenarios remains an open question in this field. In this study, we discovered a positive correlation between the semantic distance of multi-view representations and the tolerance for data corruption. Moreover, we found that the information ratio of consistency and complementarity significantly impacts the performance of discriminative and generative tasks related to multi-view representations. Based on these observations, we propose an end-to-end CLustering-guided cOntrastiVE fusioN (CLOVEN) method, which enhances the robustness and generalization of multi-view representations simultaneously. To balance consistency and complementarity, we design an asymmetric contrastive fusion module. The module first combines all view-specific representations into a comprehensive representation through a scaling fusion layer. Then, the information of the comprehensive representation and view-specific representations is aligned via contrastive learning loss function, resulting in a view-common representation that includes both consistent and complementary information. We prevent the module from learning suboptimal solutions by not allowing information alignment between view-specific representations. We design a clustering-guided module that encourages the aggregation of semantically similar views. This action reduces the semantic distance of the view-common representation. We quantitatively and qualitatively evaluate CLOVEN on five datasets, demonstrating its superiority over 13 other competitive multi-view learning methods in terms of clustering and classification performance. In the data-corrupted scenario, our proposed method resists noise interference better than competitors. Additionally, the visualization demonstrates that CLOVEN succeeds in preserving the intrinsic structure of view-specific representations and improves the compactness of view-common representations. Our code can be found at https://github.com/guanzhou-ke/cloven.
引用
收藏
页码:2056 / 2069
页数:14
相关论文
共 50 条
  • [21] AMCFCN: attentive multi-view contrastive fusion clustering net
    Xiao, Huarun
    Hong, Zhiyong
    Xiong, Liping
    Zeng, Zhiqiang
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 25
  • [22] SCHG: Spectral Clustering-guided Hypergraph Neural Networks for Multi-view Semi-supervised Learning
    Wu, Yuze
    Lan, Shiyang
    Cai, Zhiling
    Fu, Mingjian
    Li, Jinbo
    Wang, Shiping
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [23] Diverse representation-guided graph learning for multi-view metric clustering
    Sang, Xiaoshuang
    Zou, Yang
    Li, Feng
    He, Ranran
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (07)
  • [24] Clustering-Guided Twin Contrastive Learning for Endomicroscopy Image Classification
    Zhou, Jingjun
    Dong, Xiangjiang
    Liu, Qian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2879 - 2890
  • [25] Multi-view Contrastive Graph Clustering
    Pan, Erlin
    Kang, Zhao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [26] Multi-level Feature Learning for Contrastive Multi-view Clustering
    Xu, Jie
    Tang, Huayi
    Ren, Yazhou
    Peng, Liang
    Zhu, Xiaofeng
    He, Lifang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16030 - 16039
  • [27] Global and local combined contrastive learning for multi-view clustering
    Gu, Wenjie
    Zhu, Changming
    MULTIMEDIA SYSTEMS, 2024, 30 (05)
  • [28] MULTI-VIEW SUBSPACE CLUSTERING WITH CONSENSUS GRAPH CONTRASTIVE LEARNING
    Zhang, Jie
    Sun, Yuan
    Guo, Yu
    Wang, Zheng
    Nie, Feiping
    Wang, Fei
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 6340 - 6344
  • [29] Multi-View Graph Contrastive Learning for Urban Region Representation
    Zhang, Yu
    Xu, Yonghui
    Cui, Lizhen
    Yan, Zhongmin
    Proceedings of the International Joint Conference on Neural Networks, 2023, 2023-June
  • [30] Multi-View Graph Contrastive Learning for Urban Region Representation
    Zhang, Yu
    Xu, Yonghui
    Cui, Lizhen
    Yan, Zhongmin
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,