Tailored heterostructured Ni3N-NiO nano-frameworks for boosting electrocatalytic oxygen evolution via surface-modulated plasma strategy

被引:4
作者
Ouyang, Bo [1 ,4 ]
Qin, Haonan [1 ]
Sun, Chao [1 ,2 ]
Deng, Yilin [3 ]
Li, Ang [1 ]
Zhu, Jipeng [2 ]
Kan, Erjun [1 ]
Rawat, Rajdeep Singh [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Sci, MIIT Key Lab Semicond Microstruct & Quantum Sensin, Nanjing 210094, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Lab Rd & Bridge, Civil Engn, Nanjing 210094, Peoples R China
[3] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Peoples R China
[4] Nanyang Technol Univ, Natl Inst Educ, Nat Sci & Sci Educ, Singapore 637616, Singapore
基金
中国国家自然科学基金;
关键词
structural modulation; auxiliary insulator-confined plasma; surface heating control; heterostructure; electrocatalytic O-2 evolution; NITRIDE NANOSHEETS; EFFICIENT; REDUCTION; ULTRATHIN; METALS; OER;
D O I
10.1007/s12274-024-6670-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H-2 through heterostructure formation. While chemical methods have been explored extensively for this purpose, plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks. However, the conventional plasma approach introduces complexities, leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment. In our pursuit of heterostructures with optimized oxygen evolution reaction (OER) behavior, we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni3N-NiO heterostructure (hNiNO). By meticulously controlling the surface heating process during plasma processing, such approach allows for the streamlined fabrication of hNiNO nano-frameworks. The resulting nano-framework exhibits outstanding catalytic performance, as evidenced by its overpotential of 320 mV at a current density of 10 mA<middle dot>cm(-2), in an alkaline environment. This stands in stark contrast to the performance of NiO-covered Ni3N fabricated using the conventional plasma method (sNiNO). Operando plasma diagnostics, coupled with numerical simulations, further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni3N-NiO nanostructure, highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.
引用
收藏
页码:7909 / 7917
页数:9
相关论文
共 54 条
[1]   Low-dimensional heterostructures for advanced electrocatalysis: an experimental and computational perspective [J].
Ahsan, Md Ariful ;
He, Tianwei ;
Noveron, Juan C. ;
Reuter, Karsten ;
Puente-Santiago, Alain R. ;
Luque, Rafael .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (03) :812-828
[2]   Phase engineering of iron group transition metal selenides for water splitting [J].
Cao, Wenwen ;
Shen, Qi ;
Men, Dandan ;
Ouyang, Bo ;
Sun, Yiqiang ;
Xu, Kun .
MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (20) :4865-4879
[3]   Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting [J].
Chen, Peirong ;
Ye, Jianshan ;
Wang, Hui ;
Ouyang, Liuzhang ;
Zhu, Min .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 883
[4]   Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis [J].
Chen, Zhiyan ;
Song, Yao ;
Cai, Jinyan ;
Zheng, Xusheng ;
Han, Dongdong ;
Wu, Yishang ;
Zang, Yipeng ;
Niu, Shuwen ;
Liu, Yun ;
Zhu, Junfa ;
Liu, Xiaojing ;
Wang, Gongming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) :5076-5080
[5]   Synergistic Coupling of Metallic Cobalt Nitride Nanofibers and IrOx Nanoparticle Catalysts for Stable Oxygen Evolution [J].
Cho, Su-Ho ;
Yoon, Ki Ro ;
Shin, Kihyun ;
Jung, Ji-Won ;
Kim, Chanhoon ;
Cheong, Jun Young ;
Youn, Doo-Young ;
Song, Seok Won ;
Henkelman, Graeme ;
Kim, Il-Doo .
CHEMISTRY OF MATERIALS, 2018, 30 (17) :5941-5950
[6]   Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation [J].
Cui, Baihua ;
Hu, Zheng ;
Liu, Chang ;
Liu, Siliang ;
Chen, Fangshuai ;
Hu, Shi ;
Zhang, Jinfeng ;
Zhou, Wei ;
Deng, Yida ;
Qin, Zhenbo ;
Wu, Zhong ;
Chen, Yanan ;
Cui, Lifeng ;
Hu, Wenbin .
NANO RESEARCH, 2021, 14 (04) :1149-1155
[7]   Single-Atom Co-Decorated MoS2 Nanosheets Assembled on Metal Nitride Nanorod Arrays as an Efficient Bifunctional Electrocatalyst for pH-Universal Water Splitting [J].
Doan, Thi Luu Luyen ;
Nguyen, Dinh Chuong ;
Prabhakaran, Sampath ;
Kim, Do Hwan ;
Tran, Duy Thanh ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (26)
[8]   3D hierarchical V-Ni-based nitride heterostructure as a highly efficient pH-universal electrocatalyst for the hydrogen evolution reaction [J].
Dong, Xue ;
Yan, Haijing ;
Jiao, Yanqing ;
Guo, Dezheng ;
Wu, Aiping ;
Yang, Ganceng ;
Shi, Xia ;
Tian, Chungui ;
Fu, Honggang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (26) :15823-15830
[9]   Plasma-heteroatom-doped Ni-V-Fe trimetallic phospho-nitride as high-performance bifunctional electrocatalyst [J].
Fan, Huafeng ;
Chen, Wei ;
Chen, Guangliang ;
Huang, Jun ;
Song, Changsheng ;
Du, Yun ;
Li, Chaorong ;
Ostrikov, Kostya .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 268
[10]   Coordination environments build up and tune a superior synergistic "genome" toward novel trifunctional (TM-NxO4-x)@g-C16N3-H3: High-throughput inspection of ultra-high activity for water splitting and oxygen reduction reactions [J].
Fang, Chunyao ;
Wang, Xian ;
Zhang, Qiang ;
Zhang, Xihang ;
Shi, Chenglong ;
Xu, Jingcheng ;
Yang, Mengyu .
NANO RESEARCH, 2024, 17 (04) :2337-2351