Weighted composition operators on variable exponent Lebesgue spaces

被引:2
作者
Datt, Gopal [1 ]
Bajaj, Daljeet Singh [2 ]
Fiorenza, Alberto [3 ,4 ]
机构
[1] Univ Delhi, PGDAV Coll, Dept Math, Delhi 110065, India
[2] Univ Delhi, Dept Math, Delhi 110007, India
[3] Univ Napoli Federico II, Via Monteoliveto 3, I-80134 Naples, Italy
[4] CNR, Ist Applicazioni Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
关键词
Weighted composition operators; Variable exponent Lebesgue spaces; Boundedness; Injectiveness; Compactness; Closed range;
D O I
10.1007/s43036-024-00366-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize the boundedness of weighted composition operators, induced by measurable transformations and complex-valued measurable functions, on variable exponent Lebesgue spaces. We also derive conditions for these operators to be compact or injective or have closed range. In addition, we investigate some relations between these operators and multiplication operators.
引用
收藏
页数:23
相关论文
共 24 条
[1]  
[Anonymous], 1996, Chin. J. Contemp. Math
[2]   Weighted composition operators on Lorentz spaces [J].
Arora, Subhash Chander ;
Datt, Gopal ;
Verma, Satish .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) :701-708
[3]  
Azimi MR, 2022, MEDITERR J MATH, V19, DOI 10.1007/s00009-022-02086-3
[4]   Composition operators on variable exponent Lebesgue spaces [J].
Bajaj, D. S. ;
Datt, G. .
ANALYSIS MATHEMATICA, 2024, 50 (02) :345-366
[5]  
Castillo René Erlin, 2015, Rev.colomb.mat., V49, P293, DOI 10.15446/recolma.v49n2.60447
[6]   UNITARY, SELF-ADJOINT AND J-SYMMETRIC WEIGHTED COMPOSITION OPERATORS ON FOCK-SOBOLEV SPACES [J].
Chen, Ren-yu ;
Yang, Zi-cong ;
Zhou, Ze-hua .
OPERATORS AND MATRICES, 2022, 16 (04) :1139-1154
[7]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[8]   Essential ascent and descent of weighted composition operators on Lorentz sequence spaces [J].
Datt, Gopal ;
Bajaj, Daljeet Singh .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]  
Castillo RE, 2021, ANAL MATH PHYS, V11, DOI 10.1007/s13324-021-00593-2