MicroRNAs in Atrial Fibrillation: Mechanisms, Vascular Implications, and Therapeutic Potential

被引:9
作者
Vardas, Emmanouil P. [1 ,2 ]
Theofilis, Panagiotis [1 ]
Oikonomou, Evangelos [3 ]
Vardas, Panos E. [4 ]
Tousoulis, Dimitris [1 ]
机构
[1] Univ Athens, Med Sch, Gen Hosp Athens Hippokration, Cardiol Dept 1, Athens 11528, Greece
[2] Gen Hosp Athens G Gennimatas, Dept Cardiol, Athens 11527, Greece
[3] Univ Athens, Sotiria Reg Hosp Chest Dis, Med Sch, Cardiol Dept 3, Athens 11527, Greece
[4] Acad Athens, Biomed Res Fdn, Hygeia Hosp Grp, Heart Sect, Athens 15123, Greece
关键词
atrial fibrillation; fibrosis; inflammation; oxidative stress; microRNA; C-REACTIVE PROTEIN; OXIDATIVE STRESS; CARDIOMYOCYTES; INFLAMMATION; EXPRESSION; FIBROSIS;
D O I
10.3390/biomedicines12040811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Atrial fibrillation (AFib), the most prevalent arrhythmia in clinical practice, presents a growing global health concern, particularly with the aging population, as it is associated with devastating complications and an impaired quality of life. Its pathophysiology is multifactorial, including the pathways of fibrosis, inflammation, and oxidative stress. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as substantial contributors in AFib pathophysiology, by affecting those pathways. In this review, we explore the intricate relationship between miRNAs and the aforementioned aspects of AFib, shedding light on the molecular pathways as well as the potential diagnostic applications. Recent evidence also suggests a possible role of miRNA therapeutics in maintenance of sinus rhythm via the antagonism of miR-1 and miR-328, or the pharmacological upregulation of miR-27b and miR-223-3p. Unraveling the crosstalk between specific miRNA profiles and genetic predispositions may pave the way for personalized therapeutic approaches, setting the tone for precision medicine in atrial fibrillation.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease [J].
Allessie, Maurits A. ;
de Groot, Natasja M. S. ;
Houben, Richard P. M. ;
Schotten, Ulrich ;
Boersma, Eric ;
Smeets, Joep L. ;
Crijns, Harry J. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2010, 3 (06) :606-615
[2]   miR-146a is a pivotal regulator of neutrophil extracellular trap formation promoting thrombosis [J].
Arroyo, Ana B. ;
Fernandez-Perez, Maria P. ;
del Monte, Alberto ;
aguila, Sonia ;
Mendez, Raul ;
Hernandez-Antolin, Rebecca ;
Garcia-Barbera, Nuria ;
de los Reyes-Garcia, Ascension M. ;
Gonzalez-Jimenez, Paula ;
Arcas, Maria I. ;
Vicente, Vicente ;
Menendez, Rosario ;
Andres, Vicente ;
Gonzalez-Conejero, Rocio ;
Martinez, Constantino .
HAEMATOLOGICA, 2021, 106 (06) :1636-1646
[3]   LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation [J].
Cao, Feng ;
Li, Zhe ;
Ding, Wen-mao ;
Yan, Ling ;
Zhao, Qing-yan .
MOLECULAR MEDICINE, 2019, 25 (1)
[4]   The mechanisms of atrial fibrillation [J].
Chen, Peng-Sheng ;
Chou, Chung-Chuan ;
Tan, Alex Y. ;
Zhou, Shengmei ;
Fishbein, Michael C. ;
Hwang, Chun ;
Karagueuzian, Hrayr S. ;
Lin, Shien-Fong .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2006, 17 :S2-S7
[5]   Prevalence of atrial fibrillation in the Italian elderly population and projections from 2020 to 2060 for Italy and the European Union: the FAI Project [J].
Di Carlo, Antonio ;
Bellino, Leonardo ;
Consoli, Domenico ;
Mori, Fabio ;
Zaninelli, Augusto ;
Baldereschi, Marzia ;
Cattarinussi, Alessandro ;
D'Alfonso, Maria Grazia ;
Gradia, Chiara ;
Sgherzi, Bruno ;
Pracucci, Giovanni ;
Piccardi, Benedetta ;
Polizzi, Biancamaria ;
Inzitari, Domenico ;
Aliprandi, M. L. ;
Bonsangue, E. ;
Locatelli, P. ;
Saurgnani, P. ;
Senziani, L. G. ;
Tarantini, D. ;
Rota, Rita Paola ;
Boninsegni, R. ;
Feltrin, T. ;
Lancia, E. ;
Latella, F. ;
Monici, G. ;
Portera, F. ;
Ceccherini, S. ;
Borello, G. ;
Contartese, A. ;
D'Amico, A. ;
D'Urzo, G. ;
Grillo, G. C. ;
Mellea, F. ;
Ramondino, C. .
EUROPACE, 2019, 21 (10) :1468-1475
[6]   The role of microRNAs in the development, regulation, and treatment of atrial fibrillation [J].
Galenko, Oxana ;
Jacobs, Victoria ;
Knight, Stacey ;
Taylor, Madisyn ;
Cutler, Michael J. ;
Muhlestein, Joseph B. ;
Carlquist, John L. ;
Knowlton, Kirk U. ;
Bunch, T. Jared .
JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY, 2019, 55 (03) :297-305
[7]   Circulating MicroRNAs as Potential Biomarkers of Atrial Fibrillation [J].
Gomes da Silva, Ananilia Medeiros ;
Goes de Araujo, Jessica Nayara ;
Costa de Freitas, Renata Caroline ;
Silbiger, Vivian Nogueira .
BIOMED RESEARCH INTERNATIONAL, 2017, 2017
[8]   Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation [J].
Hao, Hongting ;
Yan, Sen ;
Zhao, Xinbo ;
Han, Xuejie ;
Fang, Ning ;
Zhang, Yun ;
Dai, Chenguang ;
Li, Wenpeng ;
Yu, Hui ;
Gao, Yunlong ;
Wang, Dingyu ;
Gao, Qiang ;
Duan, Yu ;
Yuan, Yue ;
Li, Yue .
JOURNAL OF TRANSLATIONAL MEDICINE, 2022, 20 (01)
[9]   MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease [J].
Hu, Shijun ;
Huang, Mei ;
Li, Zongjin ;
Jia, Fangjun ;
Ghosh, Zhumur ;
Lijkwan, Maarten A. ;
Fasanaro, Pasquale ;
Sun, Ning ;
Wang, Xi ;
Li, Fabio Martel ;
Robbins, Robert C. ;
Wu, Joseph C. .
CIRCULATION, 2010, 122 (11) :S124-S131
[10]   Inflammation and the pathogenesis of atrial fibrillation [J].
Hu, Yu-Feng ;
Chen, Yi-Jen ;
Lin, Yenn-Jiang ;
Chen, Shih-Ann .
NATURE REVIEWS CARDIOLOGY, 2015, 12 (04) :230-243