Small area estimation of labour force indicators under unit-level multinomial mixed models

被引:1
作者
Bugallo, Maria [1 ]
Esteban, Maria Dolores [1 ]
Hobza, Tomas [2 ]
Morales, Domingo [1 ]
Perez, Agustin [3 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res, Edificio Torretamarit Avda Univ S-N, Elche 03202, Alicante, Spain
[2] Czech Tech Univ, Dept Math, Trojanova 13, Prague 2, Czech Republic
[3] Miguel Hernandez Univ Elche, Dept Econ & Financial Studies, Edificio La Galia Avda Univ S-N, Elche 03202, Alicante, Spain
关键词
inactivity; labour force survey; multinomial mixed model; small area estimation; unemployment rate; unit-level data; PREDICTION; POVERTY; COUNTS; ERROR; TIME;
D O I
10.1093/jrsssa/qnae033
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This paper presents a new statistical methodology for the small area estimation of the proportion of employed, unemployed and inactive people, and of unemployment rates. The novel empirical best and plug-in predictors are based on a multinomial mixed model that is fitted to unit-level data. Model parameters are estimated by maximum-likelihood and mean-squared errors by parametric bootstrap. Several simulation experiments are carried out to empirically investigate the properties of these estimators and predictors. Finally, a detailed application to real data from the first Spanish Labour Force Survey of 2021 is included, where the target is to map labour force indicators by province, sex, and age group.
引用
收藏
页码:241 / 270
页数:30
相关论文
共 45 条
[1]  
[Anonymous], 1980, J. Comput. Appl. Math., DOI DOI 10.1016/0771-050X(80)90039-X
[2]   AN ADAPTIVE ALGORITHM FOR THE APPROXIMATE CALCULATION OF MULTIPLE INTEGRALS [J].
BERNTSEN, J ;
ESPELID, TO ;
GENZ, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1991, 17 (04) :437-451
[3]   Poisson mixed models for studying the poverty in small areas [J].
Boubeta, Miguel ;
Jose Lombardia, Maria ;
Morales, Domingo .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 107 :32-47
[4]   Empirical best prediction under area-level Poisson mixed models [J].
Boubeta, Miguel ;
Jose Lombardia, Maria ;
Morales, Domingo .
TEST, 2016, 25 (03) :548-569
[5]  
BRECKLING J, 1988, BIOMETRIKA, V75, P761
[6]   l2-Penalized temporal logit-mixed models for the estimation of regional obesity prevalence over time [J].
Burgard, Jan P. ;
Krause, Joscha ;
Muennich, Ralf ;
Morales, Domingo .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (07) :1744-1768
[7]   M-quantile models for small area estimation [J].
Chambers, Ray ;
Tzavidis, Nikos .
BIOMETRIKA, 2006, 93 (02) :255-268
[8]   Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK [J].
Chambers, Ray ;
Salvati, Nicola ;
Tzavidis, Nikos .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2016, 179 (02) :453-479
[9]   Disease mapping via negative binomial regression M-quantiles [J].
Chambers, Ray ;
Dreassi, Emanuela ;
Salvati, Nicola .
STATISTICS IN MEDICINE, 2014, 33 (27) :4805-4824
[10]   Small area prediction of counts under a non-stationary spatial model [J].
Chandra, Hukum ;
Salvati, Nicola ;
Chambers, Ray .
SPATIAL STATISTICS, 2017, 20 :30-56