High Color Conversion Efficiency Realized in Graphene-Connected Nanorod Micro-LEDs Using Hybrid Ag Nanoparticles and Quantum Dots

被引:1
作者
Fang, Aoqi [1 ]
Tang, Penghao [1 ]
Xie, Yiyang [1 ]
Du, Zaifa [2 ]
Guo, Weiling [1 ]
Mei, Yu [1 ]
Xu, Hao [1 ]
Sun, Jie [3 ,4 ,5 ]
机构
[1] Beijing Univ Technol, Key Lab Optoelect Technol, Beijing 100124, Peoples R China
[2] Weifang Univ, Sch Phys & Elect Informat, Weifang 261061, Peoples R China
[3] Fuzhou Univ, Fujian Sci & Technol Innovat Lab Optoelect Informa, Fuzhou 350100, Peoples R China
[4] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350100, Peoples R China
[5] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Quantum Device Phys Lab, S-41296 Gothenburg, Sweden
关键词
localized surface plasmons; micro LED; non-radiative energy transfer; quantum Dots; LIGHT-EMITTING-DIODES; ENHANCEMENT; LAYER;
D O I
10.1002/adom.202400230
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a uniform nanorod (NR) array is etched onto the surface of Micro-Light-Emitting-Diodes (mu LEDs) and mix Ag nanoparticles (NPs) with QDs to fill the gaps between the nanorods. Simultaneously, the study utilizes graphene to connect individual nanorods and enhance current spreading. The nanorod array's structure significantly reduces the distance between the QDs and the quantum well (QW), reducing energy loss from the excitation light source through a non-radiative energy transfer (NRET) mechanism. Additionally, the Ag NPs function as localized surface plasmons (LSPs), further enhancing the CCE of QDs via the absorption resonance. In this study, the effects of two types of Ag NPs are compared with different absorption resonance peaks on device performance. The results demonstrate that Ag NPs with absorption resonance peaks matching the emission wavelength of QDs play a more crucial role in the system. This configuration achieves a CCE of 77.78% for mu LEDs with nanorod arrays, operating at a current of 10 mA. Compared to the conventional mu LED structure with QDs only on the surface, the proposed method improves the CCE of mu LEDs by an impressive 86.5%. This outcome underscores the significant contribution of the NR structure and LSPs in enhancing the CCE of QD-mu LEDs. A hybrid quantum dot nanorod Micro-LED (QD-NR-mu LED) with LSPs assistance to enhance the CCE of hybrid mu LEDs. This study significantly improves the color conversion efficiency of QD-mu LEDs through non-radiative energy transfer and localized surface plasmon coupling, paving the way for full-color display of mu LEDs. image
引用
收藏
页数:9
相关论文
共 39 条
[1]   Light-emitting devices - Turning the tables on surface plasmons [J].
Barnes, WL .
NATURE MATERIALS, 2004, 3 (09) :588-589
[2]   Photoluminescence of Single GaN/InGaN Nanorod Light Emitting Diode Fabricated on a Wafer Scale [J].
Chan, Christopher C. S. ;
Zhuang, YiDing ;
Reid, Benjamin P. L. ;
Jia, Wei ;
Holmes, Mark J. ;
Alexander-Webber, Jack A. ;
Nakazawa, Shingo ;
Shields, Philip A. ;
Allsopp, Duncan W. E. ;
Taylor, Robert A. .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (08)
[3]   Ultrahigh Color Conversion Efficiency Nano-Light-Emitting Diode With Single Electrical Contact [J].
Du, Zaifa ;
Wang, Kun ;
Sun, Jie ;
Guo, Weiling ;
Wu, Chaoxing ;
Lin, Chang ;
Yan, Qun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) :1156-1161
[4]   Localized Surface Plasmon Coupling Nanorods With Graphene as a Transparent Conductive Electrode for Micro Light-Emitting Diodes [J].
Du, Zaifa ;
Feng, Hongjuan ;
Liu, Yongzhen ;
Tang, Penghao ;
Qian, Fengsong ;
Sun, Jie ;
Guo, Weiling ;
Song, Jibin ;
Chen, Enguo ;
Guo, Tailiang ;
Yan, Qun .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (12) :2133-2136
[5]   Quantum Dot Color Conversion Efficiency Enhancement in Micro-Light-Emitting Diodes by Non-Radiative Energy Transfer [J].
Du, Zaifa ;
Li, Dianlun ;
Guo, Weiling ;
Xiong, Fangzhu ;
Tang, Penghao ;
Zhou, Xiongtu ;
Zhang, Yongai ;
Guo, Tailiang ;
Yan, Qun ;
Sun, Jie .
IEEE ELECTRON DEVICE LETTERS, 2021, 42 (08) :1184-1187
[6]   Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism [J].
Fan, Xiaotong ;
Wu, Tingzhu ;
Liu, Bin ;
Zhang, Rong ;
Kuo, Hao-Chung ;
Chen, Zhong .
OPTO-ELECTRONIC ADVANCES, 2021, 4 (04)
[7]   Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology [J].
Han, Hau-Vei ;
Lin, Huang-Yu ;
Lin, Chien-Chung ;
Chong, Wing-Cheung ;
Li, Jie-Ru ;
Chen, Kuo-Ju ;
Yu, Peichen ;
Chen, Teng-Ming ;
Chen, Huang-Ming ;
Lau, Kei-May ;
Kuo, Hao-Chung .
OPTICS EXPRESS, 2015, 23 (25) :32504-32515
[8]   Fabrication of a Highly Stable White Light-Emitting Diode With Multiple-Layer Colloidal Quantum Dots [J].
Hsu, Shun-Chieh ;
Ke, Li-Ann ;
Lin, Hsiu-Ching ;
Chen, Teng-Ming ;
Lin, Huang-Yu ;
Chen, Yu-Ze ;
Chueh, Yu-Lun ;
Kuo, Hao-Chung ;
Lin, Chien-Chung .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2017, 23 (05)
[9]   Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil [J].
Huang, Ming ;
Bakharev, Pavel V. ;
Wang, Zhu-Jun ;
Biswal, Mandakini ;
Yang, Zheng ;
Jin, Sunghwan ;
Wang, Bin ;
Park, Hyo Ju ;
Li, Yunqing ;
Qu, Deshun ;
Kwon, Youngwoo ;
Chen, Xianjue ;
Lee, Sun Hwa ;
Willinger, Marc-Georg ;
Yoo, Won Jong ;
Lee, Zonghoon ;
Ruoff, Rodney S. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :289-+
[10]   Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode [J].
Huang, Yang-Yi ;
Li, Zong-Han ;
Lai, Yi-Cheng ;
Chen, Jun-Chen ;
Wu, Shung-Hsiang ;
Yang, Shaobo ;
Kuo, Yang ;
Yang, Chih-Chung ;
Hsu, Ta-Cheng ;
Lee, Chi-Ling .
OPTICS EXPRESS, 2022, 30 (17) :31322-31335