SAMPLE SIZE ESTIMATES FOR RISK-NEUTRAL SEMILINEAR PDE-CONSTRAINED OPTIMIZATION

被引:3
作者
Milz, Johannes [1 ]
Ulbrich, Michael [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
stochastic optimization; PDE-constrained optimization under uncertainty; sample average approximation; Monte Carlo sampling; sample complexity; uncertainty quantification; TRUST-REGION ALGORITHM; STOCHASTIC COLLOCATION; COST;
D O I
10.1137/22M1512636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The sample average approximation (SAA) approach is applied to risk -neutral optimization problems governed by semilinear elliptic partial differential equations with random inputs. After constructing a compact set that contains the SAA critical points, we derive nonasymptotic sample size estimates for SAA critical points using the covering number approach. Thereby, we derive upper bounds on the number of samples needed to obtain accurate critical points of the riskneutral PDE-constrained optimization problem through SAA critical points. We quantify accuracy using expectation and exponential tail bounds. Numerical illustrations are presented.
引用
收藏
页码:844 / 869
页数:26
相关论文
共 79 条
[1]  
Alns M., 2015, ARCH NUMER SOFTW, V3, P9, DOI DOI 10.11588/ANS.2015.100.20553
[2]  
AUBIN J.-P., 2009, user Class, DOI [10.1007/978-0-8176-4848-0, DOI 10.1007/978-0-8176-4848-0]
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]   Low-rank solution of an optimal control problem constrained by random Navier-Stokes equations [J].
Benner, Peter ;
Dolgov, Sergey ;
Onwunta, Akwum ;
Stoll, Martin .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2020, 92 (11) :1653-1678
[5]  
BIRMAN M.S., 1980, Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory, V114
[6]  
Birman MS, 1967, Mathematics of the USSR Sbornik, V2, P295, DOI 10.1070/SM1967v002n03ABEH002343
[7]  
Bonnans J.F., 2000, SPRING S OPERAT RES
[8]  
BORZI A., 2012, Computational Optimization of Systems Governed by Partial Differential Equations, V8, DOI DOI 10.1137/1.9781611972054
[9]  
Boucheron Stephane, 2013, CONCENTRATION INEQUA
[10]  
BULDYGIN V. V., 2000, Transl. Math. Monogr., V188, DOI [10.1090/mmono/188, DOI 10.1090/MMONO/188]