Federated Deep Reinforcement Learning for Task Offloading in Digital Twin Edge Networks

被引:13
|
作者
Dai, Yueyue [1 ]
Zhao, Jintang [1 ]
Zhang, Jing [2 ]
Zhang, Yan [3 ]
Jiang, Tao [1 ]
机构
[1] Huazhong Univ Sci & Technol, Res Ctr Mobile Commun 6G, Sch Cyber Sci & Engn, Wuhan 430074, Peoples R China
[2] Inst Space Integrated Ground Network, Hefei 230088, Peoples R China
[3] Univ Oslo, Dept Informat, N-0317 Oslo, Norway
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2024年 / 11卷 / 03期
基金
中国国家自然科学基金;
关键词
Digital twins; Computational modeling; Task analysis; Training; Resource management; Base stations; Servers; Digital twin edge networks; federated deep reinforcement learning; task offloading; RESOURCE-ALLOCATION; ASSOCIATION;
D O I
10.1109/TNSE.2024.3350710
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Digital twin edge networks provide a new paradigm that combines mobile edge computing (MEC) and digital twins to improve network performance and reduce communication cost by utilizing digital twin models of physical objects. The construction of digital twin models requires powerful computing ability. However, the distributed devices with limited computing resources cannot complete high-fidelity digital twin construction. Moreover, weak communication links between these devices may hinder the potential of digital twins. To address these issues, we propose a two-layer digital twin edge network, in which the physical network layer offloads training tasks using passive reflecting links, and the digital twin layer establishes a digital twin model to record the dynamic states of physical components. We then formulate a system cost minimization problem to jointly optimize task offloading, configurations of passive reflecting links, and computing resources. Finally, we design a federated deep reinforcement learning (DRL) scheme to solve the problem, where local agents train offloading decisions and global agents optimize the allocation of edge computing resources and configurations of passive reflecting elements. Numerical results show the effectiveness of the proposed federated DRL and it can reduce the system cost by up to 67.1% compared to the benchmarks.
引用
收藏
页码:2849 / 2863
页数:15
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin Networks
    Dai, Yueyue
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4968 - 4977
  • [2] Digital Twin Assisted Task Offloading for Aerial Edge Computing and Networks
    Li, Bin
    Liu, Yufeng
    Tan, Ling
    Pan, Heng
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 10863 - 10877
  • [3] Task offloading in vehicular edge computing networks via deep reinforcement learning
    Karimi, Elham
    Chen, Yuanzhu
    Akbari, Behzad
    COMPUTER COMMUNICATIONS, 2022, 189 : 193 - 204
  • [4] Federated Deep Reinforcement Learning for Online Task Offloading and Resource Allocation in WPC-MEC Networks
    Zang, Lianqi
    Zhang, Xin
    Guo, Boren
    IEEE ACCESS, 2022, 10 : 9856 - 9867
  • [5] Efficient End-Edge-Cloud Task Offloading in 6G Networks Based on Multiagent Deep Reinforcement Learning
    She, Hao
    Yan, Lixing
    Guo, Yongan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 20260 - 20270
  • [6] Energy-Efficient Task Offloading and Resource Allocation via Deep Reinforcement Learning for Augmented Reality in Mobile Edge Networks
    Chen, Xing
    Liu, Guizhong
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10843 - 10856
  • [7] QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled Internet of Vehicles
    He, Xiaoming
    Lu, Haodong
    Du, Miao
    Mao, Yingchi
    Wang, Kun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (04) : 2252 - 2261
  • [8] Multiagent Deep Reinforcement Learning for Task Offloading and Resource Allocation in Cybertwin-Based Networks
    Hou, Wenjing
    Wen, Hong
    Song, Huanhuan
    Lei, Wenxin
    Zhang, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (22) : 16256 - 16268
  • [9] Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning
    Chen, Ying
    Gu, Wei
    Xu, Jiajie
    Zhang, Yongchao
    Min, Geyong
    CHINA COMMUNICATIONS, 2023, 20 (11) : 164 - 175
  • [10] Intelligent Task Offloading in Vehicular Networks: A Deep Reinforcement Learning Perspective
    Fofana, Namory
    Ben Letaifa, Asma
    Rachedi, Abderrezak
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (01) : 201 - 216