Supercritical Henon-type equation with a forcing term

被引:2
作者
Ishige, Kazuhiro [1 ]
Katayama, Sho [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
关键词
Henon-type equation; Lane-Emden equation; forcing term; supercritical; the Joseph-Lundgren exponent; SEMILINEAR ELLIPTIC EQUATION; POSITIVE ENTIRE SOLUTIONS; INFINITE MULTIPLICITY; ASYMPTOTIC-BEHAVIOR; EXISTENCE;
D O I
10.1515/anona-2024-0003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the structure of solutions to the elliptic problem for a Henon-typeequation with a forcing term: -Delta = alpha(x)u(p) + kappa mu, in R-N, u > 0, in R-N, (P-k) where N >= 3, p > 1, kappa > 0, and alpha is a positive continuous function in R-N\{0}, and mu is a nonnegative Radonmeasure in R-N. Under suitable assumptions on the exponentp, the coefficient alpha, and the forcing term mu, wegive a complete classification of the existence/nonexistence of solutions to problem (P-kappa) with respect to kappa.
引用
收藏
页数:28
相关论文
共 24 条
[1]   Infinite multiplicity of positive entire solutions for a semilinear elliptic equation [J].
Bae, S ;
Chang, TK ;
Pahk, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (02) :367-387
[2]   Asymptotic behavior of positive solutions of inhomogeneous semilinear elliptic equations [J].
Bae, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (08) :1373-1403
[3]   Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on Rn [J].
Bae, S ;
Ni, WM .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :191-210
[4]   Positive entire stable solutions of inhomogeneous semilinear elliptic equations [J].
Bae, Soohyun ;
Lee, Kijung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) :7012-7024
[5]   Existence of positive entire solutions of semilinear elliptic equations [J].
Bae, Soohyun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E607-E615
[6]   An inhomogeneous semilinear equation in entire space [J].
Bernard, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (01) :184-214
[7]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[8]   Fast and Slow Decaying Solutions of Lane-Emden Equations Involving Nonhomogeneous Potential [J].
Chen, Huyuan ;
Huang, Xia ;
Zhou, Feng .
ADVANCED NONLINEAR STUDIES, 2020, 20 (02) :339-359
[9]   Weak solutions of semilinear elliptic equation involving Dirac mass [J].
Chen, Huyuan ;
Felmer, Patricio ;
Yang, Jianfu .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (03) :729-750
[10]  
Deng YB, 2008, P ROY SOC EDINB A, V138, P301