A potential C-S-H nucleation mechanism: atomistic simulations of the portlandite to C-S-H transformation

被引:24
作者
Aretxabaleta X.M. [1 ]
López-Zorrilla J. [1 ]
Labbez C. [2 ]
Etxebarria I. [1 ,3 ]
Manzano H. [1 ]
机构
[1] Fisika saila, Euskal Herriko Unibertsitatea UPV/EHU, Sarriena Auzoa z/g, Basque Country, Leioa
[2] ICB, UMR 6303 CNRS, Univ. Bourgogne Franche-Comté, Dijon
[3] EHU Quantum Center, Euskal Herriko Unibertsitatea, UPV/EHU
关键词
Atomistic simulation; Calcium Silicate Hydrate; Free energy of reaction; Nucleation; Portlandite;
D O I
10.1016/j.cemconres.2022.106965
中图分类号
学科分类号
摘要
The nucleation of the C-S-H gel is a complex process, key to controlling the hydration kinetics and microstructure development of cement. In this paper, a mechanism for the crystallization step during the C-S-H gel non-classical nucleation is proposed and explored by atomistic simulation methods. In the proposed mechanism portlandite precursor monolayers undergo a chemically induced transformation by condensation of silicate dimmers, forming C-S-H monolayers. We studied by DFT and nudged elastic band the structural transformation from bulk portlandite to a tobermorite-like calcium hydroxide polymorph, and the silicate condensation reaction at portlandite surface. Then, both processes are studied together, investigating the topochemical transformation from a portlandite monolayer to a C-S-H monolayer at room conditions using targeted molecular dynamics and umbrella sampling methods. Comparing the free energy of the process with thermodynamic data we conclude that the proposed mechanism is a potential path for C-S-H formation. © 2022 The Author(s)
引用
收藏
相关论文
共 86 条
[61]  
Nagai T., Ito T., Hattori T., Yamanaka T., Compression mechanism and amorphization of portlandite, Ca (OH) 2: Structural refinement under pressure, Physics and Chemistry of Minerals, 27, 7, pp. 462-466, (2000)
[62]  
Dupuis R., Dolado J.S., Benoit M., Surga J., Ayuela A., Quantum nuclear dynamics of protons within layered hydroxides at high pressure, Sci. Rep., 7, 1, pp. 1-7, (2017)
[63]  
Leinenweber K., Partin D.E., Schuelke U., O'Keeffe M., Von Dreele R.B., The structure of high pressure Ca (OD) 2II from powder neutron diffraction: Relationship to the ZrO2and EuI2Structures, J. Solid State Chem., 132, 2, pp. 267-273, (1997)
[64]  
Iizuka R., Yagi T., Komatsu K., Gotou H., Tsuchiya T., Kusaba K., Kagi H., Crystal structure of the high-pressure phase of calcium hydroxide, portlandite: In situ powder and single-crystal X-ray diffraction study, Am. Mineralogist, 98, 8-9, pp. 1421-1428, (2013)
[65]  
Shao S., Bi J., Gao P., Liu G., Zhou M., Lv J., Xie Y., Wang Y., Stability of Ca (OH) 2 at Earth's deep lower mantle conditions, Phys. Rev. B, 104, 1, (2021)
[66]  
Ekbundit S., Leinenweber K., Yarger J., Robinson J., Verhelst-Voorhees M., Wolf G., New high-pressure phase and pressure-induced amorphization of Ca (OH) 2: Grain size effect, J. Solid State Chem., 126, 2, pp. 300-307, (1996)
[67]  
Zhang R., Zhang S., Guo Y., Fu Z., Legut D., Germann T.C., Veprek S., First-principles design of strong solids: Approaches and applications, Phys. Rep., 826, pp. 1-49, (2019)
[68]  
Bernard E., Lothenbach B., Chlique C., Wyrzykowski M., Dauzeres A., Pochard I., Cau-Dit-Coumes C., Characterization of magnesium silicate hydrate (MSH), Cem. Concr. Res., 116, pp. 309-330, (2019)
[69]  
Schlitter J., Engels M., Kruger P., Targeted molecular dynamics: A new approach for searching pathways of conformational transitions, J. Mol. Graph., 12, 2, pp. 84-89, (1994)
[70]  
Schlitter J., Swegat W., Mulders T., Distance-type reaction coordinates for modelling activated processes, Mol. Model. Annu., 7, 6, pp. 171-177, (2001)