Data-driven models and digital twins for sustainable combustion technologies

被引:11
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems [J].
Sivaranjani, S. ;
Agarwal, Etika ;
Gupta, Vijay .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) :4978-4985
[42]   Data-driven inference of low-order isostable-coordinate-based dynamical models using neural networks [J].
Ahmed, Talha ;
Sadovnik, Amir ;
Wilson, Dan .
NONLINEAR DYNAMICS, 2023, 111 (03) :2501-2519
[43]   An unsupervised data completion method for physically-based data-driven models [J].
Ayensa-Jimenez, Jacobo ;
Doweidar, Mohamed H. ;
Sanz-Herrera, Jose A. ;
Doblare, Manuel .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 344 :120-143
[44]   Multi-objective combustion optimization based on data-driven hybrid strategy [J].
Zheng, Wei ;
Wang, Chao ;
Yang, Yajun ;
Zhang, Yongfei .
ENERGY, 2020, 191 (191)
[45]   Data-driven digital twin technology for optimized control in process systems [J].
He, Rui ;
Chen, Guoming ;
Dong, Che ;
Sun, Shufeng ;
Shen, Xiaoyu .
ISA TRANSACTIONS, 2019, 95 :221-234
[46]   Ensemble and stochastic conceptual data-driven approaches for improving streamflow simulations: Exploring different hydrological and data-driven models and a diagnostic tool [J].
Hah, David ;
Quilty, John M. ;
Sikorska-Senoner, Anna E. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 157
[47]   Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries [J].
Ma, Shuaiyin ;
Ding, Wei ;
Liu, Yang ;
Ren, Shan ;
Yang, Haidong .
APPLIED ENERGY, 2022, 326
[48]   Sustainable maintainability management practices for offshore assets: A data-driven decision strategy [J].
Zhang, Shengyue ;
Yan, Yifei ;
Wang, Peng ;
Xu, Zhiqian ;
Yan, Xiangzhen .
JOURNAL OF CLEANER PRODUCTION, 2019, 237
[49]   Principles and Research Agenda for Sustainable, Data-Driven Food Production Planning and Control [J].
Bresler, Maggie ;
Romsdal, Anita ;
Strandhagen, Jan Ola ;
Oluyisola, Olumide E. .
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: THE PATH TO DIGITAL TRANSFORMATION AND INNOVATION OF PRODUCTION MANAGEMENT SYSTEMS, PT I, 2020, 591 :634-641
[50]   A multi-fidelity framework for developing digital twins of combustion systems from heterogeneous data: Application to ammonia combustion [J].
Ozden, Aysu ;
Savarese, Matteo ;
Giuntini, Lorenzo ;
Procacci, Alberto ;
Galassi, Riccardo Malpica ;
Coussement, Axel ;
Contino, Francesco ;
Parente, Alessandro .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)