Data-driven models and digital twins for sustainable combustion technologies

被引:11
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Digital Twins in the Sustainable Construction Industry [J].
Zahedi, Foad ;
Alavi, Hamidreza ;
Sardroud, Javad Majrouhi ;
Dang, Hongtao .
BUILDINGS, 2024, 14 (11)
[32]   Data-driven sparse discovery of hysteresis models for piezoelectric actuators [J].
Chandra, Abhishek ;
Curti, Mitrofan ;
Tiels, Koen ;
Lomonova, Elena A. ;
Tartakovsky, Daniel M. .
TWENTIETH BIENNIAL IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (IEEE CEFC 2022), 2022,
[33]   Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence [J].
Goel, Ankit ;
Bernstein, Dennis S. .
2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, :1470-1475
[34]   Real-time update of data-driven reduced and full order models with applications [J].
Prakash, Om ;
Huang, Biao .
COMPUTERS & CHEMICAL ENGINEERING, 2025, 194
[35]   Feedback linearisation of mechanical systems using data-driven models [J].
Floren, Merijn ;
Classens, Koen ;
Oomen, Tom ;
Noel, Jean -Philippe .
JOURNAL OF SOUND AND VIBRATION, 2024, 577
[36]   Optimal Antibody Purification Strategies Using Data-Driven Models [J].
Liu, Songsong ;
Papageorgiou, Lazaros G. .
ENGINEERING, 2019, 5 (06) :1077-1092
[37]   Overview of Data-Driven Models for Wind Turbine Wake Flows [J].
Ye, Maokun ;
Li, Min ;
Liu, Mingqiu ;
Xiao, Chengjiang ;
Wan, Decheng .
JOURNAL OF MARINE SCIENCE AND APPLICATION, 2025, 24 (01) :1-20
[38]   Learning dominant physical processes with data-driven balance models [J].
Callaham, Jared L. ;
Koch, James, V ;
Brunton, Bingni W. ;
Kutz, J. Nathan ;
Brunton, Steven L. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[39]   Data-driven nonlinear aeroelastic models of morphing wings for control [J].
Fonzi, N. ;
Brunton, S. L. ;
Fasel, U. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2239)
[40]   Deep neural networks for data-driven LES closure models [J].
Beck, Andrea ;
Flad, David ;
Munz, Claus-Dieter .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398