Data-driven models and digital twins for sustainable combustion technologies

被引:11
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Data-Driven Link Prediction Over Graphical Models [J].
Alpago, Daniele ;
Zorzi, Mattia ;
Ferrante, Augusto .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (04) :2215-2228
[22]   Data-driven variational multiscale reduced order models [J].
Mou, Changhong ;
Koc, Birgul ;
San, Omer ;
Rebholz, Leo G. ;
Iliescu, Traian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
[23]   Solving inverse problems using data-driven models [J].
Arridge, Simon ;
Maass, Peter ;
Oktem, Ozan ;
Schonlieb, Carola-Bibiane .
ACTA NUMERICA, 2019, 28 :1-174
[24]   A Data-Driven Approach to Selecting Imperfect Maintenance Models [J].
Liu, Yu ;
Huang, Hong-Zhong ;
Zhang, Xiaoling .
IEEE TRANSACTIONS ON RELIABILITY, 2012, 61 (01) :101-112
[25]   Dynamic data-driven reduced-order models [J].
Peherstorfer, Benjamin ;
Willcox, Karen .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 291 :21-41
[26]   Stability preserving data-driven models with latent dynamics [J].
Luo, Yushuang ;
Li, Xiantao ;
Hao, Wenrui .
CHAOS, 2022, 32 (08)
[27]   Machine intelligence and the data-driven future of marine science [J].
Malde, Ketil ;
Handegard, Nils Olav ;
Eikvil, Line ;
Salberg, Arnt-Borre .
ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (04) :1274-1285
[28]   On the Contribution of Data Errors in DNS Data-Driven VPG Correlation Models [J].
Poroseva, Svetlana, V ;
Rivera, Juampablo E. Heras .
AIAA AVIATION 2022 FORUM, 2022,
[29]   Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health [J].
Oudin, Antoine ;
Maatoug, Redwan ;
Bourla, Alexis ;
Ferreri, Florian ;
Bonnot, Olivier ;
Millet, Bruno ;
Schoeller, Felix ;
Mouchabac, Stephane ;
Adrien, Vladimir .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2023, 25
[30]   Data-driven invariant modelling patterns for digital twin design [J].
Semeraro, Concetta ;
Lezoche, Mario ;
Panetto, Herve ;
Dassisti, Michele .
JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2023, 31