Data-driven models and digital twins for sustainable combustion technologies

被引:11
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 50 条
[11]   DATA-DRIVEN APPROACHES TO LEARN HYCHEM MODELS [J].
Ji, Weiqi ;
Zanders, Julian ;
Park, Ji-Woong ;
Deng, Sili .
PROCEEDINGS OF ASME 2021 INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2021), 2021,
[12]   Data-driven aerodynamic models for aeroelastic simulations [J].
Lelkes, Janos ;
Horvath, David Andras ;
Lendvai, Balint ;
Farkas, Balazs ;
Bak, Bendeguz Dezso ;
Kalmar-Nagy, Tamas .
JOURNAL OF SOUND AND VIBRATION, 2023, 564
[13]   DATA-DRIVEN IDENTIFICATION OF NONLINEAR FLAME MODELS [J].
Ghani, Abdulla ;
Boxx, Isaac ;
Noren, Carrie .
PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXHIBITION, VOL 4A, 2020,
[14]   Promoting global stability in data-driven models of quadratic nonlinear dynamics [J].
Kaptanoglu, Alan A. ;
Callaham, Jared L. ;
Aravkin, Aleksandr ;
Hansen, Christopher J. ;
Brunton, Steven L. .
PHYSICAL REVIEW FLUIDS, 2021, 6 (09)
[15]   A data-driven subgrid scale model in Large Eddy Simulation of turbulent premixed combustion [J].
Shin, Junsu ;
Ge, Yipeng ;
Lampmann, Arne ;
Pfitzner, Michael .
COMBUSTION AND FLAME, 2021, 231
[16]   Data-driven based multi-objective combustion optimization covering static and states [J].
Zheng, Wei ;
Wang, Chao ;
Liu, Da .
EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
[17]   Modeling and Key Technologies of a Data-Driven Smart City System [J].
Fang, Yufei ;
Shan, Zhiguang ;
Wang, Wei .
IEEE ACCESS, 2021, 9 :91244-91258
[18]   Multiple target data-driven models to enable sustainable process manufacturing: An industrial bioprocess case study [J].
Fisher, Oliver J. ;
Watson, Nicholas J. ;
Porcu, Laura ;
Bacon, Darren ;
Rigley, Martin ;
Gomes, Rachel L. .
JOURNAL OF CLEANER PRODUCTION, 2021, 296
[19]   Beyond Digital Data and Information Technology: Conceptualizing Data-Driven Culture [J].
Anton, Eduard ;
Oesterreich, Thuy Duong ;
Aptyka, Markus ;
Teuteberg, Frank .
PACIFIC ASIA JOURNAL OF THE ASSOCIATION FOR INFORMATION SYSTEMS, 2023, 15 (03) :1-36
[20]   Performance analysis of data-driven sustainable supply chain management [J].
Gazibey, Yavuz ;
Ozkan-Ozen, Yesim Deniz ;
Ozturkoglu, Yucel .
INTERNATIONAL JOURNAL OF BUSINESS PERFORMANCE MANAGEMENT, 2024, 25 (05) :630-656