Data-driven models and digital twins for sustainable combustion technologies

被引:7
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 112 条
  • [91] A framework for data-based turbulent combustion closure: A posteriori validation
    Ranade, Rishikesh
    Echekki, Tarek
    [J]. COMBUSTION AND FLAME, 2019, 210 : 279 - 291
  • [92] A framework for data-based turbulent combustion closure: A priori validation
    Ranade, Rishikesh
    Echekki, Tarek
    [J]. COMBUSTION AND FLAME, 2019, 206 : 490 - 505
  • [93] Digital Twin: Values, Challenges and Enablers From a Modeling Perspective
    Rasheed, Adil
    San, Omer
    Kvamsdal, Trond
    [J]. IEEE ACCESS, 2020, 8 : 21980 - 22012
  • [94] Aerodynamic Data Fusion Toward the Digital Twin Paradigm
    Renganathan, S. Ashwin
    Harada, Kohei
    Mavris, Dimitri N.
    [J]. AIAA JOURNAL, 2020, 58 (09) : 3902 - 3918
  • [95] Machine learning clustering algorithms for the automatic generation of chemical reactor networks from CFD simulations
    Savarese, Matteo
    Cuoci, Alberto
    De Paepe, Ward
    Parente, Alessandro
    [J]. FUEL, 2023, 343
  • [96] Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks
    Seltz, Andrea
    Domingo, Pascale
    Vervisch, Luc
    Nikolaou, Zacharias M.
    [J]. COMBUSTION AND FLAME, 2019, 210 : 71 - 82
  • [97] Digital twin paradigm: A systematic literature review
    Semeraro, Concetta
    Lezoche, Mario
    Panetto, Herve
    Dassisti, Michele
    [J]. COMPUTERS IN INDUSTRY, 2021, 130
  • [98] Shafto M., 2010, Technology Area, V11
  • [99] A fully coupled, parallel approach for the post-processing of CFD data through reactor network analysis
    Stagni, A.
    Cuoci, A.
    Frassoldati, A.
    Faravelli, T.
    Ranzi, E.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 60 : 197 - 212
  • [100] Combustion modeling using principal component analysis
    Sutherland, James C.
    Parente, Alessandro
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1563 - 1570