Data-driven models and digital twins for sustainable combustion technologies

被引:7
作者
Parente, Alessandro [1 ,2 ,3 ,4 ]
Swaminathan, Nedunchezhian [5 ]
机构
[1] Univ Libre Bruxelles, Ecole Polytech Bruxelles, Aerothermo Mech Dept, Ave Franklin D,Roosevelt 50, B-1050 Brussels, Belgium
[2] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
[3] Univ Libre Bruxelles, Brussels Inst Thermal Fluid Syst & Clean Energy B, B-1050 Ixelles, Belgium
[4] Vrije Univ Brussel, B-1050 Ixelles, Belgium
[5] Univ Cambridge, Dept Engn, Hopkinson Lab, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
PRINCIPAL COMPONENT ANALYSIS; DIRECT NUMERICAL-SIMULATION; GENERATIVE ADVERSARIAL NETWORKS; PROPER ORTHOGONAL DECOMPOSITION; CONVOLUTIONAL NEURAL-NETWORKS; NOX EMISSIONS; TURBULENT; LES; IDENTIFICATION; FRAMEWORK;
D O I
10.1016/j.isci.2024.109349
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We highlight the critical role of data in developing sustainable combustion technologies for industries requiring high -density and localized energy sources. Combustion systems are complex and difficult to predict, and high-fidelity simulations are out of reach for practical systems because of computational cost. Data -driven approaches and artificial intelligence offer promising solutions, enabling renewable synthetic fuels to meet decarbonization goals. We discuss open challenges associated with the availability and fidelity of data, physics -based numerical simulations, and machine learning, focusing on developing digital twins capable of mirroring the behavior of industrial combustion systems and continuously updating based on newly available information.
引用
收藏
页数:10
相关论文
共 112 条
  • [1] [Anonymous], 2020, An EU Strategy for Energy System Integration" COM
  • [2] [Anonymous], 2014, World Energy Outlook 2014 Executive Summary
  • [3] [Anonymous], 2018, Gartner top 10 strategic technology trends for 2019
  • [4] A technique for characterising feature size and quality of manifolds
    Armstrong, Elizabeth
    Sutherland, James C.
    [J]. COMBUSTION THEORY AND MODELLING, 2021, 25 (04) : 646 - 668
  • [5] Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications
    Aversano, Gianmarco
    D'Alessio, Giuseppe
    Coussement, Axel
    Contino, Francesco
    Parente, Alessandro
    [J]. RESULTS IN ENGINEERING, 2021, 10
  • [6] Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations
    Aversano, Gianmarco
    Ferrarotti, Marco
    Parente, Alessandro
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (04) : 5373 - 5381
  • [7] Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications
    Aversano, Gianmarco
    Bellemans, Aurelie
    Li, Zhiyi
    Coussement, Axel
    Gicquel, Olivier
    Parente, Alessandro
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2019, 121 : 422 - 441
  • [8] On defining progress variable for Raman/Rayleigh experiments in partially-premixed methane flames
    Barlow, Robert S.
    Magnotti, Gaetano
    Cutcher, Hugh C.
    Masri, Assaad R.
    [J]. COMBUSTION AND FLAME, 2017, 179 : 117 - 129
  • [9] Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models
    Berger, Lukas
    Kleinheinz, Konstantin
    Attili, Antonio
    Bisetti, Fabrizio
    Pitsch, Heinz
    Mueller, Michael E.
    [J]. COMBUSTION THEORY AND MODELLING, 2018, 22 (03) : 480 - 504
  • [10] An a-posteriori evaluation of principal component analysis-based models for turbulent combustion simulations
    Biglari, Amir
    Sutherland, James C.
    [J]. COMBUSTION AND FLAME, 2015, 162 (10) : 4025 - 4035