Dynamics, quantum states and Compton scattering in nonlinear gravitational waves

被引:0
作者
Audagnotto, G. [1 ]
Di Piazza, A. [1 ,2 ,3 ]
机构
[1] Max Planck Inst Nucl Phys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 06期
关键词
Classical Theories of Gravity; Nonperturbative Effects; Scattering Amplitudes; Space-Time Symmetries; PLANE; FIELDS; MASS;
D O I
10.1007/JHEP06(2024)023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The classical dynamics and the construction of quantum states in a plane wave curved spacetime are examined, paying particular attention to the similarities with the case of an electromagnetic plane wave in flat spacetime. A natural map connecting the dynamics of a particle in the Rosen metric and the motion of a charged particle in an electromagnetic plane wave is unveiled. We then discuss how this map can be translated into the quantum description by exploiting the large number of underlying symmetries. We examine the complete analogy between Volkov solutions and fermion states in the Rosen chart and properly extend this to massive vector bosons. We finally report the squared S-matrix element of Compton scattering in a sandwich plane wave spacetime in the form of a two-dimensional integral.
引用
收藏
页数:24
相关论文
共 55 条
  • [11] Gravitational-wave physics and astronomy in the 2020s and 2030s
    Bailes, M.
    Berger, B. K.
    Brady, P. R.
    Branchesi, M.
    Danzmann, K.
    Evans, M.
    Holley-Bockelmann, K.
    Iyer, B. R.
    Kajita, T.
    Katsanevas, S.
    Kramer, M.
    Lazzarini, A.
    Lehner, L.
    Losurdo, G.
    Luck, H.
    McClelland, D. E.
    McLaughlin, M. A.
    Punturo, M.
    Ransom, S.
    Raychaudhury, S.
    Reitze, D. H.
    Ricci, F.
    Rowan, S.
    Saito, Y.
    Sanders, G. H.
    Sathyaprakash, B. S.
    Schutz, B. F.
    Sesana, A.
    Shinkai, H.
    Siemens, X.
    Shoemaker, D. H.
    Thorpe, J.
    van den Brand, J. F. J.
    Vitale, S.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (05) : 344 - 366
  • [12] GROUP THEORETICAL DISCUSSION OF RELATIVISTIC WAVE EQUATIONS
    BARGMANN, V
    WIGNER, EP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1948, 34 (05) : 211 - 223
  • [13] Birrell N. D., 1984, Quantum Fields in Curved Space, DOI [10.1017/CBO9780511622632, DOI 10.1017/CBO9780511622632]
  • [14] Homogeneous plane waves
    Blau, M
    O'Loughlin, M
    [J]. NUCLEAR PHYSICS B, 2003, 654 (1-2) : 135 - 176
  • [15] Penrose limits, supergravity and brane dynamics
    Blau, M
    Figueroa-O'Farrill, J
    Papadopoulos, G
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (18) : 4753 - 4805
  • [16] GRAVITATIONAL WAVES IN GENERAL RELATIVITY .3. EXACT PLANE WAVES
    BONDI, H
    PIRANI, FAE
    ROBINSON, I
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1959, 251 (1267): : 519 - 533
  • [17] PLANE GRAVITATIONAL WAVES IN GENERAL RELATIVITY
    BONDI, H
    [J]. NATURE, 1957, 179 (4569) : 1072 - 1073
  • [18] BRAGINSKY VB, 1985, ZH EKSP TEOR FIZ+, V89, P744
  • [19] Einstein spaces which are mapped conformally on each other
    Brinkmann, HW
    [J]. MATHEMATISCHE ANNALEN, 1925, 94 : 119 - 145
  • [20] VOLKOV SOLUTIONS, GAUGE-POINCARE TRANSFORMATIONS, AND PLANE-WAVE DECOUPLING
    BROWN, RW
    KOWALSKI, KL
    [J]. PHYSICAL REVIEW LETTERS, 1983, 51 (26) : 2355 - 2358