Spatial configuration of interlayer maximizing suppression and conversion efficiency of lithium polysulfides for advanced lithium-sulfur batteries

被引:7
作者
Wang, Wenxi [1 ]
Liang, Lubao [2 ]
Gao, Lintong [2 ]
Cao, Qi [2 ]
Jing, Bo [2 ]
Wang, Xianyou [2 ]
Hou, Hongshuai [3 ]
Zhang, Wenli [4 ]
Lu, Yan [1 ,5 ,6 ]
机构
[1] Helmholtz Zentrum Berlin Mat & Energie, Dept Electrochem Energy Storage, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[2] Xiangtan Univ, Key Lab Environmentally Friendly Chem & Applicat, Natl Local Joint Engn Lab Key Mat New Energy Stora, Natl Base Int Sci & Technol Cooperat,Sch Chem,Mini, Xiangtan 411105, Peoples R China
[3] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[4] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biore finer, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[5] Friedrich Schiller Univ Jena, Inst Tech & Environm Chem, Philosophenweg 7b, D-07743 Jena, Germany
[6] Helmholtz Inst Polymers Energy Applicat HIPOLE, Philosophenweg 7b, D-07743 Jena, Germany
关键词
Polyacrylonitrile; Interlayer; Polysulfides; Lithium-sulfur batteries; PERFORMANCE; GRAPHENE; SEPARATOR;
D O I
10.1016/j.mtener.2024.101521
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Shuttle effect of polysulfides and sluggish redox kinetics of sulfur are two tricky problems in lithium -sulfur (Li-S) batteries. Engineering interlayer between sulfur cathode and separator is an innovative approach to alleviate these weaknesses. From the spatial perspective, we validate an efficient interlayer by regulating the stacking configuration composed of a conductive layer (carbonized polyacrylonitrilecarbon nanotube, CPCNT) and catalytic layer (carbonized polyacrylonitrile-selenium, CPSe), forming a hierarchical polysulfide suppression and conversion system. Electrochemical measurements reveal that the contact priority of CPCNT or CPSe on sulfur cathode poses a momentous impact on the overall working efficiency of interlayer. Accordingly, CPSe@CPCNT|S enables Li-S batteries to deliver a specific capacity of up to 760 mAh/g at 1.0C after 500 cycles. Impressively, Li-S batteries endure 250 cycles with 87% capacity retention at 0.2C, even under a sulfur loading of 6.1 mg/cm2. The polysulfide diffusion visualization coupled with finite elemental analyses disclose that CPSe@CPCNT|S configuration shapes a higher diffusion damping towards polysulfides, while maintaining a smooth electron motion pathway from cathode to interlayer for polysulfide conversion, which is the decisive cause of the enhanced electrochemical performance. This research affords a spatial strategy for interlayer design in Li-S batteries and other alkali metal-sulfur batteries. (c) 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:10
相关论文
共 48 条
[1]   Mesoporous Carbon Inter layers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium-Sulfur Batteries [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) :4580-4587
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Dual-Functional V2C MXene Assembly in Facilitating Sulfur Evolution Kinetics and Li-Ion Sieving toward Practical Lithium-Sulfur Batteries [J].
Chen, Le ;
Sun, Yingjie ;
Wei, Xijun ;
Song, Lixian ;
Tao, Gang ;
Cao, Xuan ;
Wang, Dong ;
Zhou, Guangmin ;
Song, Yingze .
ADVANCED MATERIALS, 2023, 35 (26)
[4]   Flexible Hierarchical Co-Doped NiS2@CNF-CNT Electron Deficient Interlayer with Grass-Roots Structure for Li-S Batteries [J].
Dai, Xin ;
Lv, Guangjun ;
Wu, Zhen ;
Wang, Xu ;
Liu, Yan ;
Sun, Junjie ;
Wang, Qichao ;
Xiong, Xuyang ;
Liu, Yongning ;
Zhang, Chaofeng ;
Xin, Sen ;
Chen, Yuanzhen ;
Zhou, Tengfei .
ADVANCED ENERGY MATERIALS, 2023, 13 (21)
[5]   Synergistic mediation of sulfur conversion in lithium-sulfur batteries by a Gerber tree-like interlayer with multiple components [J].
Fan, Chao-Ying ;
Liu, Si-Yu ;
Li, Huan-Huan ;
Shi, Yan-Hong ;
Wang, Han-Chi ;
Wang, Hai-Feng ;
Sun, Hai-Zhu ;
Wu, Xing-Long ;
Zhang, Jing-Ping .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) :11255-11262
[6]   Interlayer Material Selection for Lithium-Sulfur Batteries [J].
Fan, Linlin ;
Li, Matthew ;
Li, Xifei ;
Xiao, Wei ;
Chen, Zhongwei ;
Lu, Jun .
JOULE, 2019, 3 (02) :361-386
[7]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)
[8]   The Multi-Functional Effects of CuS as Modifier to Fabricate Efficient Interlayer for Li-S Batteries [J].
Geng, Mengzi ;
Yang, Hangqi ;
Shang, Chaoqun .
ADVANCED SCIENCE, 2022, 9 (35)
[9]   Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries [J].
Hao, Hongchang ;
Hutter, Tanya ;
Boyce, Brad L. ;
Watt, John ;
Liu, Pengcheng ;
Mitlin, David .
CHEMICAL REVIEWS, 2022, 122 (09) :8053-8125
[10]   Controllably Designed "Vice-Electrode" Interlayers Harvesting High Performance Lithium Sulfur Batteries [J].
Hao, Youchen ;
Xiong, Dongbin ;
Liu, Wen ;
Fan, Linlin ;
Li, Dejun ;
Li, Xifei .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) :40273-40280