A high-dimensional single-index regression for interactions between treatment and covariates

被引:1
|
作者
Park, Hyung [1 ]
Tarpey, Thaddeus [1 ]
Petkova, Eva [1 ]
Ogden, R. Todd [2 ]
机构
[1] NYU, Sch Med, Dept Populat Hlth, Div Biostat, New York, NY 10016 USA
[2] Columbia Univ, Dept Biostat, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
Precision medicine; Modified covariate method; Single-index model; Sufficient reduction; Central mean subspace; VARIABLE SELECTION; ANTIDEPRESSANT RESPONSE; ESTABLISHING MODERATORS; REDUCTION; BIOSIGNATURES; LASSO;
D O I
10.1007/s00362-024-01546-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper explores a methodology for dimension reduction in regression models for a treatment outcome, specifically to capture covariates' moderating impact on the treatment-outcome association. The motivation behind this stems from the field of precision medicine, where a comprehensive understanding of the interactions between a treatment variable and pretreatment covariates is essential for developing individualized treatment regimes (ITRs). We provide a review of sufficient dimension reduction methods suitable for capturing treatment-covariate interactions and establish connections with linear model-based approaches for the proposed model. Within the framework of single-index regression models, we introduce a sparse estimation method for a dimension reduction vector to tackle the challenges posed by high-dimensional covariate data. Our methods offer insights into dimension reduction techniques specifically for interaction analysis, by providing a semiparametric framework for approximating the minimally sufficient subspace for interactions.
引用
收藏
页码:4025 / 4056
页数:32
相关论文
共 50 条
  • [41] A Note on High-Dimensional Linear Regression With Interactions
    Hao, Ning
    Zhang, Hao Helen
    AMERICAN STATISTICIAN, 2017, 71 (04) : 291 - 297
  • [42] On single-index coefficient regression models
    Xia, YC
    Li, WK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1275 - 1285
  • [43] Conditional regression for single-index models
    Lanteri, Alessandro
    Maggioni, Mauro
    Vigogna, Stefano
    BERNOULLI, 2022, 28 (04) : 3051 - 3078
  • [44] Single-Index Quantile Regression with Left Truncated Data
    Xu Hongxia
    Fan Guoliang
    Li Jinchang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (05) : 1963 - 1987
  • [45] Robust inference for high-dimensional single index models
    Han, Dongxiao
    Han, Miao
    Huang, Jian
    Lin, Yuanyuan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2023, 50 (04) : 1590 - 1615
  • [46] Single-index partially functional linear regression model
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    STATISTICAL PAPERS, 2020, 61 (03) : 1107 - 1123
  • [47] Robust estimation and selection for single-index regression model
    Bindele, Huybrechts F.
    Abebe, Asheber
    Zeng, Peng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (08) : 1376 - 1393
  • [48] Single-index composite quantile regression
    Rong Jiang
    Zhan-Gong Zhou
    Wei-Min Qian
    Wen-Qiong Shao
    Journal of the Korean Statistical Society, 2012, 41 : 323 - 332
  • [49] Single-Index Quantile Regression with Left Truncated Data
    Hongxia Xu
    Guoliang Fan
    Jinchang Li
    Journal of Systems Science and Complexity, 2022, 35 : 1963 - 1987
  • [50] High-Dimensional Statistics: Non-Parametric Generalized Functional Partially Linear Single-Index Model
    Alahiane, Mohamed
    Ouassou, Idir
    Rachdi, Mustapha
    Vieu, Philippe
    MATHEMATICS, 2022, 10 (15)