Training Generative Adversarial Networks with Adaptive Composite Gradient

被引:0
|
作者
Qi, Huiqing [1 ]
Li, Fang [1 ]
Tan, Shengli [1 ]
Zhang, Xiangyun [1 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
关键词
Generative adversarial networks; adaptive composite gradient; semi-gradient free; game theory; bilinear game;
D O I
10.1162/dint_a_00246
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The wide applications of Generative adversarial networks benefit from the successful training methods, guaranteeing that an object function converges to the local minimum. Nevertheless, designing an efficient and competitive training method is still a challenging task due to the cyclic behaviors of some gradient-based ways and the expensive computational cost of acquiring the Hessian matrix. To address this problem, we proposed the Adaptive Composite Gradients(ACG) method, linearly convergent in bilinear games under suitable settings. Theory analysis and toy-function experiments both suggest that our approach alleviates the cyclic behaviors and converges faster than recently proposed SOTA algorithms. The convergence speed of the ACG is improved by 33% than other methods. Our ACG method is a novel Semi-Gradient-Free algorithm that can reduce the computational cost of gradient and Hessian by utilizing the predictive information in future iterations. The mixture of Gaussians experiments and real-world digital image generative experiments show that our ACG method outperforms several existing technologies, illustrating the superiority and efficacy of our method.
引用
收藏
页码:120 / 157
页数:38
相关论文
共 50 条
  • [31] A Review on Generative Adversarial Networks
    Yuan, Yiqin
    Guo, Yuhao
    2020 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, COMPUTER TECHNOLOGY AND TRANSPORTATION (ISCTT 2020), 2020, : 392 - 401
  • [32] Evolutionary Generative Adversarial Networks
    Wang, Chaoyue
    Xu, Chang
    Yao, Xin
    Tao, Dacheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (06) : 921 - 934
  • [33] Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent
    Wang, Dong
    Qin, Xiaoqian
    Song, Fengyi
    Cheng, Li
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) : 2768 - 2780
  • [34] Adaptive DropBlock-Enhanced Generative Adversarial Networks for Hyperspectral Image Classification
    Wang, Junjie
    Gao, Feng
    Dong, Junyu
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5040 - 5053
  • [35] Surgical Tool Segmentation Using Generative Adversarial Networks With Unpaired Training Data
    Zhang, Zhongkai
    Rosa, Benoit
    Nageotte, Florent
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 6266 - 6273
  • [36] Conditional Variational Autoencoder with Balanced Pre-training for Generative Adversarial Networks
    Yao, Yuchong
    Wang, Xiaohui
    Ma, Yuanbang
    Fang, Han
    Wei, Jiaying
    Chen, Liyuan
    Anaissi, Ali
    Braytee, Ali
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 156 - 165
  • [37] LSN-GAN: A Novel Least Square Gradient Normalization for Generative Adversarial Networks
    Xia, Tian
    Liu, Liyuan
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 343 - 347
  • [38] Stochastically Flipping Labels of Discriminator's Outputs for Training Generative Adversarial Networks
    Yang, Rui
    Vo, Duc Minh
    Nakayama, Hideki
    IEEE ACCESS, 2022, 10 : 103644 - 103654
  • [39] Tackling Multiplayer Interaction for Federated Generative Adversarial Networks
    Hu, Chuang
    Tu, Tianyu
    Gong, Yili
    Jiang, Jiawei
    Zheng, Zhigao
    Cheng, Dazhao
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (12) : 14017 - 14030
  • [40] Image generation and classification via generative adversarial networks
    Mirabedini, Shirin
    Dastgerdi, Shadi Hejareh
    Kangavari, Mohammadreza
    AhmadiPanah, Mandi
    BIOSCIENCE RESEARCH, 2020, 17 (02): : 1356 - 1363