Multifunctional Spacer in 2D/3D Wide-Bandgap Perovskite for Monolithic Perovskite/Silicon Tandem Solar Cells

被引:1
作者
Ding, Yi-an [1 ,2 ]
Yang, Xin [3 ]
Wang, Xiaoting [1 ,2 ]
Liu, Yuanzhong [1 ,2 ]
Yan, Yiran [1 ,2 ]
Zhu, Xiangrong [3 ]
Huang, Jin [4 ]
Yang, Liyou [4 ]
Li, Lina [1 ,2 ]
Fu, Qiang [5 ]
Lu, Linfeng [1 ,2 ]
Ji, Xiaofei [1 ]
机构
[1] Chinese Acad Sci, Ctr Shanghai Adv Res Inst, 99 Haike Rd,Zhangjiang Hitech Pk Pudong, Shanghai 201210, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Shanghai Polytech Univ, Sch Energy & Mat, 2360 Jinhai Rd,Pudong, Shanghai 201209, Peoples R China
[4] JINNENG Clean Energy Technol Ltd, Jinzhong 030300, Shanxi, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong 999077, Peoples R China
关键词
2D/3D perovskite; defect passivation; perovskite/silicon tandem solar cells; stability; wide-bandgap perovskite; EFFICIENT; FORMAMIDINIUM;
D O I
10.1002/solr.202400189
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To maximize the power conversion efficiency (PCE) and stability of perovskite/silicon tandem solar cells (TSCs), high-performance and stable perovskite top cells with wide-bandgaps are required. A 2D/3D wide-bandgap perovskite with a bandgap of 1.69 eV using 1H-1,2,4-triazole-1-carboximidamide (1-TzFACl) as a spacer is developed. The 2D/3D wide-bandgap perovskite shows better film quality, enhanced crystallinity, suppressed nonradiative recombination, and significantly improved phase stability. Its initial PCE (21.58%) remains above 87% after 1560 h of continuous illumination due to the insertion of Cl- in the perovskite lattice. A monolithic two-terminal perovskite/silicon TSC achieves a PCE of 25.66% with high light stability. This work provides an ingenious strategy to restrain the phase segregation in wide-bandgap perovskites, leading to effective and stable perovskite/silicon TSCs. 2D/3D wide-bandgap perovskites are successfully constructed using 1-TzFACl as a spacer. The 2D/3D perovskite exhibits better film quality, enhanced crystallinity, and suppressed nonradiative recombination losses. The optimized device based on 2D/3D perovskite shows an efficiency of 21.58% with enhanced phase stability. An efficiency of 25.66% and improved light stability are achieved for monolithic 2-terminal perovskite/silicon tandem solar cells.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
    Al-Ashouri, Amran
    Kohnen, Eike
    Li, Bor
    Magomedov, Artiom
    Hempel, Hannes
    Caprioglio, Pietro
    Marquez, Jose A.
    Vilches, Anna Belen Morales
    Kasparavicius, Ernestas
    Smith, Joel A.
    Phung, Nga
    Menzel, Dorothee
    Grischek, Max
    Kegelmann, Lukas
    Skroblin, Dieter
    Gollwitzer, Christian
    Malinauskas, Tadas
    Jost, Marko
    Matic, Gasper
    Rech, Bernd
    Schlatmann, Rutger
    Topic, Marko
    Korte, Lars
    Abate, Antonio
    Stannowski, Bernd
    Neher, Dieter
    Stolterfoht, Martin
    Unold, Thomas
    Getautis, Vytautas
    Albrecht, Steve
    [J]. SCIENCE, 2020, 370 (6522) : 1300 - +
  • [2] On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells
    Almora, Osbel
    Aranda, Clara
    Mas-Marza, Elena
    Garcia-Belmonte, Germa
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (17)
  • [3] Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions
    Azmi, Randi
    Ugur, Esma
    Seitkhan, Akmaral
    Aljamaan, Faisal
    Subbiah, Anand S.
    Liu, Jiang
    Harrison, George T.
    Nugraha, Mohamad, I
    Eswaran, Mathan K.
    Babics, Maxime
    Chen, Yuan
    Xu, Fuzong
    Allen, Thomas G.
    Rehman, Atteq Ur
    Wang, Chien-Lung
    Anthopoulos, Thomas D.
    Schwingenschlogl, Udo
    De Bastiani, Michele
    Aydin, Erkan
    De Wolf, Stefaan
    [J]. SCIENCE, 2022, 376 (6588) : 73 - +
  • [4] Efficient Inverted Perovskite Solar Cells via Improved Sequential Deposition
    Chen, Peng
    Xiao, Yun
    Li, Lei
    Zhao, Lichen
    Yu, Maotao
    Li, Shunde
    Hu, Juntao
    Liu, Bin
    Yang, Yingguo
    Luo, Deying
    Hou, Cheng-Hung
    Guo, Xugang
    Shyue, Jing-Jong
    Lu, Zheng-Hong
    Gong, Qihuang
    Snaith, Henry J. J.
    Zhu, Rui
    [J]. ADVANCED MATERIALS, 2023, 35 (05)
  • [5] Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells
    Chin, Xin Yu
    Turkay, Deniz
    Steele, Julian A.
    Tabean, Saba
    Eswara, Santhana
    Mensi, Mounir
    Fiala, Peter
    Wolff, Christian M.
    Paracchino, Adriana
    Artuk, Kerem
    Jacobs, Daniel
    Guesnay, Quentin
    Sahli, Florent
    Andreatta, Gaelle
    Boccard, Mathieu
    Jeangros, Quentin
    Ballif, Christophe
    [J]. SCIENCE, 2023, 381 (6653) : 59 - 62
  • [6] Stability challenges for the commercialization of perovskite-silicon tandem solar cells
    Duan, Leiping
    Walter, Daniel
    Chang, Nathan
    Bullock, James
    Kang, Di
    Phang, Sieu Pheng
    Weber, Klaus
    White, Thomas
    Macdonald, Daniel
    Catchpole, Kylie
    Shen, Heping
    [J]. NATURE REVIEWS MATERIALS, 2023, 8 (04) : 261 - 281
  • [7] Fu Q., 2023, NEXT ENERGY, V1, P100004
  • [8] Selenophene-Based 2D Ruddlesden-Popper Perovskite Solar Cells with an Efficiency Exceeding 19%
    Fu, Qiang
    Chen, Mingqian
    Li, Qiaohui
    Liu, Hang
    Wang, Rui
    Liu, Yongsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (39) : 21687 - 21695
  • [9] Ionic Dopant-Free Polymer Alloy Hole Transport Materials for High-Performance Perovskite Solar Cells
    Fu, Qiang
    Tang, Xingchen
    Liu, Hang
    Wang, Rui
    Liu, Tingting
    Wu, Ziang
    Woo, Han Young
    Zhou, Tong
    Wan, Xiangjian
    Chen, Yongsheng
    Liu, Yongsheng
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) : 9500 - 9509
  • [10] Multifunctional Two-Dimensional Polymers for Perovskite Solar Cells with Efficiency Exceeding 24%
    Fu, Qiang
    Liu, Hang
    Tang, Xingchen
    Wang, Rui
    Chen, Mingqian
    Liu, Yongsheng
    [J]. ACS ENERGY LETTERS, 2022, 7 (03) : 1128 - 1136