Nonlinear Data-Driven Control Part II: qLPV Predictive Control with Parameter Extrapolation

被引:0
|
作者
Morato, Marcelo Menezes [1 ,2 ]
Normey-Rico, Julio Elias [1 ]
Sename, Olivier [2 ]
机构
[1] Univ Fed Santa Catarina UFSC, Dept Automacao & Sistemas, Florianopolis, Brazil
[2] Univ Grenoble Alpes, Grenoble INP Inst Engn Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
关键词
Data-driven control; Model Predictive Control; Linear Parameter-Varying systems; Trajectory representation; Nonlinear dynamics; TRACKING MPC; SYSTEMS; DESIGN;
D O I
10.1007/s40313-024-01115-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel data-driven Model Predictive Control (MPC) algorithm for nonlinear systems. The method is based on recent extensions of behavioural theory and Willem's Fundamental Lemma for nonlinear systems by the means of adequate Input-Output (IO) quasi-Linear Parameter-Varying (qLPV) embeddings. Thus, the MPC is formulated to ensure regulation and IO constraints satisfaction, based only on measured datasets of sufficient length (and under persistent excitation). The main innovation is to consider the knowledge of the function that maps the qLPV realisation, and apply an extrapolation procedure in order to generate the corresponding future scheduling trajectories, at each sample. Accordingly, we briefly discuss the issues of closed-loop IO stability and recursive feasibility certificates of the method. The algorithm is tested and discussed with the aid of a numerical application.
引用
收藏
页码:802 / 814
页数:13
相关论文
共 50 条
  • [41] Poisoning Attacks Against Data-Driven Predictive Control
    Yu, Yue
    Zhao, Ruihan
    Chinchali, Sandeep
    Topcu, Ufuk
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 545 - 550
  • [42] Data-driven predictive control for continuous-time linear parameter varying systems with application to wind turbine
    Xiaosuo Luo
    International Journal of Control, Automation and Systems, 2017, 15 : 619 - 626
  • [43] Data-Driven Predictive Control of Interconnected Systems Using the Koopman Operator
    Tellez-Castro, Duvan
    Garcia-Tenorio, Camilo
    Mojica-Nava, Eduardo
    Sofrony, Jorge
    Vande Wouwer, Alain
    ACTUATORS, 2022, 11 (06)
  • [44] Data-Driven Switched Model Predictive Control Without Terminal Ingredients
    Wang, Zhi-Min
    Liu, Kun-Zhi
    Wen, Si-Xin
    Sun, Xi-Ming
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 4247 - 4260
  • [45] Data-Driven Subspace Predictive Control of a Nuclear Reactor
    Vajpayee, Vineet
    Mukhopadhyay, Siddhartha
    Tiwari, Akhilanand Pati
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (02) : 666 - 679
  • [46] Data-Driven Modeling and Distributed Predictive Control of Mixed Vehicle Platoons
    Zhan, Jingyuan
    Ma, Zibo
    Zhang, Liguo
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (01): : 572 - 582
  • [47] Adaptive Observer Based Data-Driven Control for Nonlinear Discrete-Time Processes
    Xu, Dezhi
    Jiang, Bin
    Shi, Peng
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2014, 11 (04) : 1037 - 1045
  • [48] Designing Experiments for Data-Driven Control of Nonlinear Systems
    De Persis, Claudio
    Tesi, Pietro
    IFAC PAPERSONLINE, 2021, 54 (09): : 285 - 290
  • [49] Data-Driven Fault-Tolerant Tracking Control for Linear Parameter-Varying Systems
    Karimi, Zahra
    Batmani, Yazdan
    Khosrowjerdi, Mohammad Javad
    Konstantinou, Charalambos
    IEEE ACCESS, 2022, 10 : 66734 - 66742
  • [50] Data-Driven Safe Control of Stochastic Nonlinear Systems
    Esmaeili, Babak
    Modares, Hamidreza
    IFAC PAPERSONLINE, 2024, 58 (28): : 540 - 545