Nonlinear Data-Driven Control Part II: qLPV Predictive Control with Parameter Extrapolation

被引:0
|
作者
Morato, Marcelo Menezes [1 ,2 ]
Normey-Rico, Julio Elias [1 ]
Sename, Olivier [2 ]
机构
[1] Univ Fed Santa Catarina UFSC, Dept Automacao & Sistemas, Florianopolis, Brazil
[2] Univ Grenoble Alpes, Grenoble INP Inst Engn Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
关键词
Data-driven control; Model Predictive Control; Linear Parameter-Varying systems; Trajectory representation; Nonlinear dynamics; TRACKING MPC; SYSTEMS; DESIGN;
D O I
10.1007/s40313-024-01115-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel data-driven Model Predictive Control (MPC) algorithm for nonlinear systems. The method is based on recent extensions of behavioural theory and Willem's Fundamental Lemma for nonlinear systems by the means of adequate Input-Output (IO) quasi-Linear Parameter-Varying (qLPV) embeddings. Thus, the MPC is formulated to ensure regulation and IO constraints satisfaction, based only on measured datasets of sufficient length (and under persistent excitation). The main innovation is to consider the knowledge of the function that maps the qLPV realisation, and apply an extrapolation procedure in order to generate the corresponding future scheduling trajectories, at each sample. Accordingly, we briefly discuss the issues of closed-loop IO stability and recursive feasibility certificates of the method. The algorithm is tested and discussed with the aid of a numerical application.
引用
收藏
页码:802 / 814
页数:13
相关论文
共 50 条
  • [21] On the impact of regularization in data-driven predictive control
    Breschi, Valentina
    Chiuso, Alessandro
    Fabris, Marco
    Formentin, Simone
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 3061 - 3066
  • [22] Data-driven Predictive Connected Cruise Control
    Shen, Minghao
    Orosz, Gabor
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [23] RBFNN-Based Data-Driven Predictive Iterative Learning Control for Nonaffine Nonlinear Systems
    Yu, Qiongxia
    Hou, Zhongsheng
    Bu, Xuhui
    Yu, Qiongfang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (04) : 1170 - 1182
  • [24] Data-driven model predictive control for continuous pharmaceutical manufacturing
    Vega-Zambrano, Consuelo
    Diangelakis, Nikolaos A.
    Charitopoulos, Vassilis M.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2025, 672
  • [25] Robust Nonlinear Predictive Control through qLPV embedding and Zonotope Uncertainty Propagation
    Morato, Marcelo M.
    Cunha, Victor M.
    Santos, Tito L. M.
    Normey-Rico, Julio E.
    Sename, Olivier
    IFAC PAPERSONLINE, 2021, 54 (08): : 33 - 38
  • [26] Data-driven Model Predictive Control with Matrix Forgetting Factor
    Calderon, Horacio M.
    Schulz, Erik
    Oehlschlaegel, Thimo
    Werner, Herbert
    IFAC PAPERSONLINE, 2023, 56 (02): : 10077 - 10082
  • [27] A data-driven approach to nonlinear braking control
    Novara, Carlo
    Formentin, Simone
    Savaresi, Sergio M.
    Milanese, Mario
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1453 - 1458
  • [28] Data-driven adaptive consensus control for heterogeneous nonlinear Multi online reinforcement
    Ji, Xiaoqiang
    Zhang, Xicheng
    Zhu, Shaoqing
    Deng, Fuqin
    Zhu, Bin
    NEUROCOMPUTING, 2024, 596
  • [29] Guarantees for data-driven control of nonlinear systems using semidefinite programming: A survey
    Martin, Tim
    Schoen, Thomas B.
    Allgoewer, Frank
    ANNUAL REVIEWS IN CONTROL, 2023, 56
  • [30] Data-Driven Nearly Optimal Control for Constrained Nonlinear Systems
    Yang, Xiong
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 105 - 110