Nonlinear Data-Driven Control Part II: qLPV Predictive Control with Parameter Extrapolation

被引:0
|
作者
Morato, Marcelo Menezes [1 ,2 ]
Normey-Rico, Julio Elias [1 ]
Sename, Olivier [2 ]
机构
[1] Univ Fed Santa Catarina UFSC, Dept Automacao & Sistemas, Florianopolis, Brazil
[2] Univ Grenoble Alpes, Grenoble INP Inst Engn Univ Grenoble Alpes, GIPSA Lab, CNRS, F-38000 Grenoble, France
关键词
Data-driven control; Model Predictive Control; Linear Parameter-Varying systems; Trajectory representation; Nonlinear dynamics; TRACKING MPC; SYSTEMS; DESIGN;
D O I
10.1007/s40313-024-01115-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel data-driven Model Predictive Control (MPC) algorithm for nonlinear systems. The method is based on recent extensions of behavioural theory and Willem's Fundamental Lemma for nonlinear systems by the means of adequate Input-Output (IO) quasi-Linear Parameter-Varying (qLPV) embeddings. Thus, the MPC is formulated to ensure regulation and IO constraints satisfaction, based only on measured datasets of sufficient length (and under persistent excitation). The main innovation is to consider the knowledge of the function that maps the qLPV realisation, and apply an extrapolation procedure in order to generate the corresponding future scheduling trajectories, at each sample. Accordingly, we briefly discuss the issues of closed-loop IO stability and recursive feasibility certificates of the method. The algorithm is tested and discussed with the aid of a numerical application.
引用
收藏
页码:802 / 814
页数:13
相关论文
共 50 条
  • [1] Nonlinear Data-Driven Control Part I: An Overview of Trajectory Representations
    Morato, Marcelo Menezes
    Normey-Rico, Julio Elias
    Sename, Olivier
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2024, 35 (05) : 783 - 801
  • [2] Data-Driven Predictive Control for Linear Parameter-Varying Systems
    Verhoek, Chris
    Abbas, Hossam S.
    Toth, Roland
    Haesaert, Sofie
    IFAC PAPERSONLINE, 2021, 54 (08): : 101 - 108
  • [3] A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems
    Xu, Bowen
    Lu, Xinjiang
    NONLINEAR DYNAMICS, 2022, 108 (02) : 1269 - 1281
  • [4] A data-driven spatiotemporal model predictive control strategy for nonlinear distributed parameter systems
    Bowen Xu
    Xinjiang Lu
    Nonlinear Dynamics, 2022, 108 : 1269 - 1281
  • [5] Data Science and Model Predictive Control: A survey of recent advances on data-driven MPC algorithms
    Morato, Marcelo M.
    Felix, Monica S.
    JOURNAL OF PROCESS CONTROL, 2024, 144
  • [6] Efficient data-driven predictive control of nonlinear systems: A review and perspectives
    Li, Xiaojie
    Yan, Mingxue
    Zhang, Xuewen
    Han, Minghao
    Law, Adrian Wing-Keung
    Yin, Xunyuan
    DIGITAL CHEMICAL ENGINEERING, 2025, 14
  • [7] Frequency-Domain Data-Driven Predictive Control
    Meijer, T. J.
    Nouwens, S. A. N.
    Scheres, K. J. A.
    Dolk, V. S.
    Heemels, W. P. M. H.
    IFAC PAPERSONLINE, 2024, 58 (18): : 86 - 91
  • [8] Data-Driven Predictive Control for Autonomous Systems
    Rosolia, Ugo
    Zhang, Xiaojing
    Borrelli, Francesco
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 1, 2018, 1 : 259 - 286
  • [9] Identification for control approach to data-driven model predictive control
    Zakeri, Yadollah
    Sheikholeslam, Farid
    Haeri, Mohammad
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2024, 18 (03) : 281 - 301
  • [10] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017