Effect of porous transport layer wettability on oxygen transportation in proton exchange membrane water electrolysis

被引:12
作者
Li, Qing [1 ]
He, Yuting [2 ]
Zhang, Luteng [1 ]
Sun, Wan [1 ]
Ma, Zaiyong [1 ]
Zhu, Longxiang [1 ]
Lian, Qiang [1 ]
Tang, Simiao [1 ]
Pan, Liang-ming [1 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
[2] Minist Emergency Management, Sichuan Fire Res Inst, Chengdu 610036, Peoples R China
关键词
Pore -scale simulation; PEM water electrolysis; Porous transport layer; Two-phase flow; Wettability; IMMISCIBLE DISPLACEMENT; PORE-SCALE; HYDROGEN; ELECTRODES; ENERGY; CELL;
D O I
10.1016/j.jpowsour.2024.234554
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane water electrolysis stands as a promising avenue for energy storage in converting renewable energy resources into hydrogen. However, the oxygen management issues at high current densities pose substantial challenges to the system's efficiency and stability. Considering that the porous transport layer (PTL) plays a crucial role in governing the countercurrent transfer of oxygen and the water supply, the impact of PTL wettability on oxygen transport is investigated through the pore-scale simulation. The lattice Boltzmann method model coupled with a reaction boundary instead of using injection boundary simplification is proposed to better describe the mass conversion and oxygen transport dynamics driven by the reaction-introduced pressure variation. The results suggest that hydrophilicity configuration affects the oxygen-water distribution and the oxygen retreat behavior after the breakthrough. Oxygen tends to accumulate in lower hydrophilicity regions. Thus, a synergism of high and low hydrophilicity on the bottom of PTL proves advantageous in reducing oxygen saturation on the CL surface. Constructing the oxygen-water separate transport pathways effectively regulates the oxygen-water distribution and reduces oxygen transport resistance, thus remarkably reducing the oxygen saturation in PTL. These findings contribute to a better understanding of oxygen transport within PTL, facilitating the further development of PTL.
引用
收藏
页数:11
相关论文
共 57 条
[1]  
Aursjo O., 2018, Phys. Fluids, P30
[2]   Numerical Investigation of Compressive Stress and Wettability Effects on Fluid Transport in Polymer Electrolyte Membrane Fuel Cell Porous Layers [J].
Bao, Yanyao ;
Wang, Zhongzheng ;
Gan, Yixiang .
ENERGY TECHNOLOGY, 2022, 10 (12)
[3]   LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer [J].
Bhaskaran, Supriya ;
Pandey, Divyansh ;
Surasani, Vikranth Kumar ;
Tsotsas, Evangelos ;
Vidakovic-Koch, Tanja ;
Vorhauer-Huget, Nicole .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (74) :31551-31565
[4]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[5]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[6]   DYNAMIC IMMISCIBLE DISPLACEMENT MECHANISMS IN PORE DOUBLETS - THEORY VERSUS EXPERIMENT [J].
CHATZIS, I ;
DULLIEN, FAL .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1983, 91 (01) :199-222
[7]   Interface evolution during radial miscible viscous fingering [J].
Chui, Jane Y. Y. ;
de Anna, Pietro ;
Juanes, Ruben .
PHYSICAL REVIEW E, 2015, 92 (04)
[8]   Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution [J].
Ding, Lei ;
Xie, Zhiqiang ;
Yu, Shule ;
Wang, Weitian ;
Terekhov, Alexander Y. ;
Canfield, Brian K. ;
Capuano, Christopher B. ;
Keane, Alex ;
Ayers, Kathy ;
Cullen, David A. ;
Zhang, Feng-Yuan .
NANO-MICRO LETTERS, 2023, 15 (01)
[9]   Highly Porous Iridium Thin Electrodes with Low Loading and Improved Reaction Kinetics for Hydrogen Generation in PEM Electrolyzer Cells [J].
Ding, Lei ;
Wang, Weitian ;
Xie, Zhiqiang ;
Li, Kui ;
Yu, Shule ;
Capuano, Christopher B. B. ;
Keane, Alex ;
Ayers, Kathy ;
Zhang, Feng-Yuan .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (20) :24284-24295
[10]   A review on PEM electrolyzer modelling: Guidelines for beginners [J].
Falcao, D. S. ;
Pinto, A. M. F. R. .
JOURNAL OF CLEANER PRODUCTION, 2020, 261