Flame-retarding quasi-solid polymer electrolytes for high-safety lithium metal batteries

被引:22
|
作者
Liu, Xianyu [1 ]
Jia, Hao [2 ]
Li, Hongping [3 ]
机构
[1] Lanzhou City Univ, BaiLie Sch Petr Engn, Lanzhou 730070, Jiangsu Provinc, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Jiangsu Provinc, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215011, Jiangsu Provinc, Peoples R China
关键词
Lithium metal batteries; Semi-solid polymer electrolytes; Flame retarding; Research advancement; Future development; GEL ELECTROLYTE; HIGH-VOLTAGE; HIGH-PERFORMANCE; LIQUID; ANODE; PHOSPHATE; PROGRESS;
D O I
10.1016/j.ensm.2024.103263
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries (LMBs) have gained significant attention due to their potential for high energy density. However, the commonly used liquid carbonate electrolytes in LMBs are highly flammable and prone to leakage, which can lead to safety concerns such as gas production, cell swelling, fire, and even explosions during thermal runaway. To address these safety issues, all-solid electrolytes, including solid polymeric and inorganic electrolytes, have been proposed as the ultimate solution. However, all-solid polymeric electrolytes suffer from poor conductivity in the bulk electrolyte, while all-solid inorganic electrolytes face challenges with poor contact at the electrode/electrolyte interfaces, making it difficult to commercialize all solid-state LMBs. As a compromise solution, flame-retarding semi-solid polymeric electrolytes have emerged as a promising alternative in recent years, offering improved safety, excellent electrochemical performance, and great potential for commercialization. In this review, we introduce the concept that semi-solid polymeric electrolytes should possess four key dimensions of performance: physical characteristics, electrochemical characteristics, interfacial characteristics, and cost characteristics. Besides, we discuss the recent research advancements in various types of flame-retarding semisolid polymer electrolytes, including phosphate ester-based quasi-solid polymer electrolytes, ionic liquid-based quasi-solid polymer electrolytes, nitrile-based quasi-solid polymer electrolytes, fluorine-based quasi-solid polymer electrolytes, and other non-flammable quasi-solid polymer electrolytes. We also examine their flameretarding properties, mechanisms, and electrochemical performance. Furthermore, we discuss the challenges and potential directions for future development of flame-retarding quasi-solid polymer electrolytes.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Self-healing solid-state polymer electrolytes for high-safety and long-cycle lithium-ion batteries
    Lv, Haijian
    Chu, Xiaorong
    Zhang, Yuxiang
    Liu, Qi
    Wu, Feng
    Mu, Daobin
    MATERIALS TODAY, 2024, 78 : 181 - 208
  • [42] Nonwoven fabric supported flame-retarding quasi-solid electrolyte for wider-temperature safer Li-ion battery
    Das, Sayan
    Pol, Vilas G.
    Adyam, Venimadhav
    JOURNAL OF POWER SOURCES, 2024, 617
  • [43] QUASI-SOLID ORGANIC ELECTROLYTES GELATINIZED WITH POLYMETHYL-METHACRYLATE AND THEIR APPLICATIONS FOR LITHIUM BATTERIES
    IIJIMA, T
    TOYOGUCHI, Y
    EDA, N
    DENKI KAGAKU, 1985, 53 (08): : 619 - 623
  • [44] Competitive coordination of Na plus to "rescue" lithium-ion mobility in zwitterionic quasi-solid electrolytes for lithium metal batteries
    Zhang, Yating
    Zhang, Yanan
    Lin, Weiteng
    Li, Xuan
    Ji, Kemeng
    Chen, Mingming
    JOURNAL OF ENERGY CHEMISTRY, 2025, 104 : 52 - 61
  • [45] Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review
    Yun, Shuhong
    Liang, Xinghua
    Xi, Junjie
    Liao, Leyu
    Cui, Shuwan
    Chen, Lihong
    Li, Siying
    Hu, Qicheng
    POLYMERS, 2024, 16 (18)
  • [46] Customized design of electrolytes for high-safety and high-energy-density lithium batteries
    Zhai, Fangfang
    Zhou, Qian
    Lv, Zhaolin
    Wang, Yuanyuan
    Zhou, Xinhong
    Cui, Guanglei
    ENERGYCHEM, 2022, 4 (05)
  • [47] Flame-retardant polymer electrolytes enhancing the safety of lithium batteries
    Zhu, Xiaotao
    Wang, Zeru
    Fang, Zeming
    Xu, Zhuang
    Luo, Bingqi
    Yang, Huixian
    Wang, Ke
    Guo, Bing
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [48] Quasi-Solid Electrolytes with Flexible Branches and Rigid Skeletons for High-Temperature Li Metal Batteries
    Ma, Lanhua
    Zhao, Jiwei
    Li, Mengjie
    Su, Hai
    Li, Yong
    Liu, Yuansheng
    Liu, Hang
    Zygadlo-Monikowska, Ewa
    Xu, Yunhua
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (12) : 18206 - 18216
  • [49] In-Situ Polymerized Solid/Quasi-Solid Polymer Electrolyte for Lithium-Metal Batteries: Recent Progress and Perspectives
    Zhang, Hangyu
    Xu, Xijun
    Fan, Weizhen
    Zhao, Jingwei
    Huo, Yanping
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (72)
  • [50] Flame-Retardant Nonaqueous Electrolytes for High-Safety Potassium-Ion Batteries
    Wang, Hao
    Nie, Luanjie
    Chu, Xiaokang
    Chen, Hang
    Chen, Ran
    Huang, Taixin
    Lai, Qingxue
    Zheng, Jing
    SMALL METHODS, 2024, 8 (07)