Flame-retarding quasi-solid polymer electrolytes for high-safety lithium metal batteries

被引:22
|
作者
Liu, Xianyu [1 ]
Jia, Hao [2 ]
Li, Hongping [3 ]
机构
[1] Lanzhou City Univ, BaiLie Sch Petr Engn, Lanzhou 730070, Jiangsu Provinc, Peoples R China
[2] Sun Yat Sen Univ, Sch Chem Engn & Technol, Zhuhai 519082, Jiangsu Provinc, Peoples R China
[3] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215011, Jiangsu Provinc, Peoples R China
关键词
Lithium metal batteries; Semi-solid polymer electrolytes; Flame retarding; Research advancement; Future development; GEL ELECTROLYTE; HIGH-VOLTAGE; HIGH-PERFORMANCE; LIQUID; ANODE; PHOSPHATE; PROGRESS;
D O I
10.1016/j.ensm.2024.103263
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries (LMBs) have gained significant attention due to their potential for high energy density. However, the commonly used liquid carbonate electrolytes in LMBs are highly flammable and prone to leakage, which can lead to safety concerns such as gas production, cell swelling, fire, and even explosions during thermal runaway. To address these safety issues, all-solid electrolytes, including solid polymeric and inorganic electrolytes, have been proposed as the ultimate solution. However, all-solid polymeric electrolytes suffer from poor conductivity in the bulk electrolyte, while all-solid inorganic electrolytes face challenges with poor contact at the electrode/electrolyte interfaces, making it difficult to commercialize all solid-state LMBs. As a compromise solution, flame-retarding semi-solid polymeric electrolytes have emerged as a promising alternative in recent years, offering improved safety, excellent electrochemical performance, and great potential for commercialization. In this review, we introduce the concept that semi-solid polymeric electrolytes should possess four key dimensions of performance: physical characteristics, electrochemical characteristics, interfacial characteristics, and cost characteristics. Besides, we discuss the recent research advancements in various types of flame-retarding semisolid polymer electrolytes, including phosphate ester-based quasi-solid polymer electrolytes, ionic liquid-based quasi-solid polymer electrolytes, nitrile-based quasi-solid polymer electrolytes, fluorine-based quasi-solid polymer electrolytes, and other non-flammable quasi-solid polymer electrolytes. We also examine their flameretarding properties, mechanisms, and electrochemical performance. Furthermore, we discuss the challenges and potential directions for future development of flame-retarding quasi-solid polymer electrolytes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries
    Zhai, Lei
    Zhang, Weiwei
    Gong, Hongyu
    Li, Yong
    Gao, Meng
    Zhang, Xiaoyu
    Li, Dongwei
    Zhou, Yanli
    Dong, Caifu
    Liu, Wenbao
    Jiang, Fuyi
    Sun, Jianchao
    SURFACES AND INTERFACES, 2022, 34
  • [2] Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries
    Kalaga, Kaushik
    Rodrigues, Marco-Tulio F.
    Gullapalli, Hemtej
    Babu, Ganguli
    Arava, Leela Mohana Reddy
    Ajayan, Pulickel M.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (46) : 25777 - 25783
  • [3] Quasi-solid polymer electrolytes with binary and ternary salt mixtures for high-voltage lithium metal batteries
    Boaretto, Nicola
    Garcia-Calvo, Oihane
    Cobos, Monica
    de Anastro, Asier Fernandez
    Viera, Marta Diez
    Shakir, Mustafa Al Sammarraie
    Lindberg, Simon
    Barreno, Rosalia Cid
    Godillot, Gerome
    Josang, Leif Olav
    Kvasha, Andriy
    Martinez-Ibanez, Maria
    ENERGY MATERIALS, 2025, 5 (04):
  • [4] Enhancing the Performance of Lithium-Oxygen Batteries with Quasi-Solid Polymer Electrolytes
    Jia, SiXin
    Liu, FengQuan
    Xue, JinXin
    Wang, Rui
    Huo, Hong
    Zhou, JianJun
    Li, Lin
    ACS OMEGA, 2023, 8 (40): : 36710 - 36719
  • [5] Deep Eutectic Solvent-Based Solid Polymer Electrolytes for High-Voltage and High-Safety Lithium Metal Batteries
    Zhang, Chengkun
    Zheng, Hongfei
    Lin, Liang
    Wen, Jiansen
    Zhang, Shiyu
    Hu, Xinchao
    Zhou, Dongwei
    Sa, Baisheng
    Wang, Laisen
    Lin, Jie
    Xie, Qingshui
    Peng, Dong-Liang
    Lu, Jun
    ADVANCED ENERGY MATERIALS, 2024, 14 (35)
  • [6] Highly liquid retentive, ordered ion transport quasi-solid polymer electrolytes for lithium metal batteries
    Zeng, Qinghua
    Zhu, Dawei
    Shan, Jiayao
    Gao, Qingwei
    Xu, Jinting
    Xu, Qunjie
    Shi, PengHui
    Min, YuLin
    CHEMICAL ENGINEERING JOURNAL, 2024, 486
  • [7] A grafted flame-retardant gel polymer electrolyte stabilizing lithium metal for high-safety lithium metal batteries
    Chen, Shaoshan
    Wang, Yong
    Li, Zhongxiu
    Feng, Yiyu
    Feng, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (41) : 28296 - 28306
  • [8] Quasi-solid electrolytes with tailored lithium solvation for fast-charging lithium metal batteries
    Zhou, Guodong
    Yu, Jing
    Liu, Jiapeng
    Lin, Xidong
    Wang, Yuhao
    Law, Ho Mei
    Ciucci, Francesco
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (02):
  • [9] Flame-retardant single-ion conducting polymer electrolytes based on anion acceptors for high-safety lithium metal batteries
    Deng, Kuirong
    Guan, Tianyu
    Liang, Fuhui
    Zheng, Xiaoqiong
    Zeng, Qingguang
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    Wei, Lai
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (12) : 7692 - 7702
  • [10] Metal–organic framework modified quasi-solid electrolytes for all-solid lithium batteries
    Fuzhi Li
    Mingmin Li
    Pu Shi
    Haiyang Liao
    Journal of Materials Science, 2023, 58 : 14096 - 14108