Learning to Maximize Network Bandwidth Utilization with Deep Reinforcement Learning

被引:0
|
作者
Jamil, Hasibul [1 ]
Rodrigues, Elvis [1 ]
Goldverg, Jacob [1 ]
Kosar, Tevfik [1 ]
机构
[1] SUNY Buffalo, Dept Comp Sci & Engn, Amherst, NY 14260 USA
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
基金
美国国家科学基金会;
关键词
Efficient network bandwidth utilization; parallel TCP streams; deep reinforcement learning; online optimization;
D O I
10.1109/GLOBECOM54140.2023.10437507
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficiently transferring data over long-distance, high-speed networks requires optimal utilization of available network bandwidth. One effective method to achieve this is through the use of parallel TCP streams. This approach allows applications to leverage network parallelism, thereby enhancing transfer throughput. However, determining the ideal number of parallel TCP streams can be challenging due to non-deterministic background traffic sharing the network, as well as non-stationary and partially observable network signals. We present a novel learning-based approach that utilizes deep reinforcement learning (DRL) to determine the optimal number of parallel TCP streams. Our DRL-based algorithm is designed to intelligently utilize available network bandwidth while adapting to different network conditions. Unlike rule-based heuristics, which lack generalization in unknown network scenarios, our DRL-based solution can dynamically adjust the parallel TCP stream numbers to optimize network bandwidth utilization without causing network congestion and ensuring fairness among competing transfers. We conducted extensive experiments to evaluate our DRL-based algorithm's performance and compared it with several state-of-the-art online optimization algorithms. The results demonstrate that our algorithm can identify nearly optimal solutions 40% faster while achieving up to 15% higher throughput. Furthermore, we show that our solution can prevent network congestion and distribute the available network resources fairly among competing transfers, unlike a discriminatory algorithm.
引用
收藏
页码:3711 / 3716
页数:6
相关论文
共 50 条
  • [41] Trajectory Design and Bandwidth Assignment for UAVs-enabled Communication Network with Multi-Agent Deep Reinforcement Learning
    Wang, Weijian
    Lin, Yun
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [42] Deep Reinforcement Learning for Adaptive Learning Systems
    Li, Xiao
    Xu, Hanchen
    Zhang, Jinming
    Chang, Hua-hua
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2023, 48 (02) : 220 - 243
  • [43] Deep Reinforcement Learning Pairs Trading with a Double Deep Q-Network
    Brim, Andrew
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 222 - 227
  • [44] Learning for a Robot: Deep Reinforcement Learning, Imitation Learning, Transfer Learning
    Hua, Jiang
    Zeng, Liangcai
    Li, Gongfa
    Ju, Zhaojie
    SENSORS, 2021, 21 (04) : 1 - 21
  • [45] Deep Reinforcement Learning for Resource Allocation with Network Slicing in Cognitive Radio Network*
    Yuan, Siyu
    Zhang, Yong
    Qie, Wenbo
    Ma, Tengteng
    Li, Sisi
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (03) : 979 - 999
  • [46] A Survey on Deep Reinforcement Learning
    Liu Q.
    Zhai J.-W.
    Zhang Z.-Z.
    Zhong S.
    Zhou Q.
    Zhang P.
    Xu J.
    2018, Science Press (41): : 1 - 27
  • [47] Double Deep Reinforcement Learning
    Kiefer, Josue
    Dorer, Klaus
    2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC, 2023, : 17 - 22
  • [48] Coevolutionary Deep Reinforcement Learning
    Cotton, David
    Traish, Jason
    Chaczko, Zenon
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2600 - 2607
  • [49] Deep reinforcement learning: a survey
    Hao-nan Wang
    Ning Liu
    Yi-yun Zhang
    Da-wei Feng
    Feng Huang
    Dong-sheng Li
    Yi-ming Zhang
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1726 - 1744
  • [50] Deep reinforcement learning: a survey
    Wang, Hao-nan
    Liu, Ning
    Zhang, Yi-yun
    Feng, Da-wei
    Huang, Feng
    Li, Dong-sheng
    Zhang, Yi-ming
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (12) : 1726 - 1744