Breast Mass Detection and Classification Using Transfer Learning on OPTIMAM Dataset Through RadImageNet Weights

被引:1
作者
Kassahun, Ruth Kehali [1 ]
Molinara, Mario [1 ]
Bria, Alessandro [1 ]
Marrocco, Claudio [1 ]
Tortorella, Francesco [2 ]
机构
[1] Univ Cassino & Southern Lazio, Dept Elect & Informat Engn, Cassino, Italy
[2] Univ Salerno, Dept Informat & Elect Engn & Appl Math, Salerno, Italy
来源
IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II | 2024年 / 14366卷
关键词
Breast Cancer; Breast Mass Detection; Breast Mass Classification; RadImageNet; YOLO ObjectDetection; Transfer Learning; Computer Aided Diagnosis;
D O I
10.1007/978-3-031-51026-7_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A significant number of women are diagnosed with breast cancer each year. Early detection of breast masses is crucial in improving patient prognosis and survival rates. In recent years, deep learning techniques, particularly object detection models, have shown remarkable success in medical imaging, providing promising tools for the early detection of breast masses. This paper uses transfer learning methodologies to present an end-to-end breast mass detection and classification pipeline. Our approach involves a two-step process: initial detection of breast masses using variants of the YOLO object detection models, followed by classification of the detected masses into benign or malignant categories. We used a subset of OPTIMAM (OMI-DB) dataset for our study. We leveraged the weights of RadImageNet, a set of models specifically trained on medical images, to enhance our object detection models. Among the publicly available RadImageNet weights, DenseNet-121 coupled with the yolov5m model gives 0.718 mean average precision(mAP) at 0.5 IoU threshold and a True Positive Rate (TPR) of 0.97 at 0.85 False Positives Per Image (FPPI). For the classification task, we implement a transfer learning approach with fine-tuning, demonstrating the ability to effectively classify breast masses into benign and malignant categories. We used a combination of class weighting and weight decay methods to tackle the class imbalance problem for the classification task.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 18 条
  • [1] Deep learning for mass detection in Full Field Digital Mammograms
    Agarwal, Richa
    Diaz, Oliver
    Yap, Moi Hoon
    Llado, Xavier
    Marti, Robert
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121
  • [2] Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms
    Akselrod-Ballin, Ayelet
    Chorev, Michal
    Shoshan, Yoel
    Spiro, Adam
    Hazan, Alon
    Melamed, Roie
    Barkan, Ella
    Herzel, Esma
    Naor, Shaked
    Karavani, Ehud
    Koren, Gideon
    Goldscbmidt, Yaara
    Shalev, Varda
    Rosen-Zvi, Michal
    Guindy, Michal
    [J]. RADIOLOGY, 2019, 292 (02) : 331 - 342
  • [3] Transformer-based mass detection in digital mammograms
    Betancourt Tarifa A.S.
    Marrocco C.
    Molinara M.
    Tortorella F.
    Bria A.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2723 - 2737
  • [4] Convolutional Networks and Transformers for Mammography Classification: An Experimental Study
    Cantone, Marco
    Marrocco, Claudio
    Tortorella, Francesco
    Bria, Alessandro
    [J]. SENSORS, 2023, 23 (03)
  • [5] A half-second glimpse often lets radiologists identify breast cancer cases even when viewing the mammogram of the opposite breast
    Evans, Karla K.
    Haygood, Tamara Miner
    Cooper, Julie
    Culpan, Anne-Marie
    Wolfe, Jeremy M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (37) : 10292 - 10297
  • [6] OPTIMAM Mammography Image Database: A Large-Scale Resource of Mammography Images and Clinical Data
    Halling-Brown, Mark D.
    Warren, Lucy M.
    Ward, Dominic
    Lewis, Emma
    Mackenzie, Alistair
    Wallis, Matthew G.
    Wilkinson, Louise S.
    Given-Wilson, Rosalind M.
    McAvinchey, Rita
    Young, Kenneth C.
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (01)
  • [7] L‚vy D, 2016, Arxiv, DOI arXiv:1612.00542
  • [8] Microsoft COCO: Common Objects in Context
    Lin, Tsung-Yi
    Maire, Michael
    Belongie, Serge
    Hays, James
    Perona, Pietro
    Ramanan, Deva
    Dollar, Piotr
    Zitnick, C. Lawrence
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 740 - 755
  • [9] Lixuan Du, 2020, Journal of Physics: Conference Series, V1544, DOI 10.1088/1742-6596/1544/1/012033
  • [10] Current Cancer Epidemiology
    Mattiuzzi, Camilla
    Lippi, Giuseppe
    [J]. JOURNAL OF EPIDEMIOLOGY AND GLOBAL HEALTH, 2019, 9 (04) : 217 - 222