Study by simulation and realization of a fiber optic pressure sensor based on a PDMS flexible μ-membrane

被引:0
作者
Guermat, Abdelhak [1 ]
Guessoum, Assia [2 ]
Bouchaour, Mounir [1 ]
Adouane, Azzedine [1 ]
Ghoumazi, Mehdi [1 ]
Demagh, Nacereddine [2 ,3 ]
机构
[1] Univ Setif 1, Ctr Dev Adv Technol CDTA, Res Unit Opt & Photon UROP, Nonlinear Opt & Opt Fiber Team ONLFO, Setif 19000, Algeria
[2] Ferhat Abbas Univ Setif 1, Inst Opt & Precis Mech, Inst Opt & Mecan Precis, Lab Opt Appliquee Appl Opt Lab, Setif, Algeria
[3] INOOF, Inst Optometrie Ouled Fayet Optometry Inst, Algiers 16914, Algeria
关键词
Membrane; PDMS; Sensor; Micro cavity; Pressure; Reflection; Interferometer; FABRY-PEROT-INTERFEROMETER; TEMPERATURE SENSOR; SENSITIVITY;
D O I
10.1007/s11082-024-06383-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fiber optic pressure sensors operate on various interferometric principles, such as amplitude modulation and polarization variation. In this study, we have developed and implemented a Fabry-P & eacute;rot interferometric sensor employing an innovative technique for membrane fabrication. The sensor utilizes a mu-cavity formed at the terminus of a multimode optical fiber through a chemical etching process. The first reflecting surface is established at the interface (core/air), while the second reflection takes place at the polymeric mu-membrane within polydimethylsiloxane (PDMS), serving as the second interface (PDMS/Air). The mu-cavity exhibits dimensions of up to 63 mu m in depth and 83 mu m in base diameter, with a membrane thickness of approximately 6 mu m. The pressure and temperature sensitivity of the sensor are measured at - 51.8 nm/KPa and 0.3 nm/degrees C, respectively. The performance of the developed sensor is comprehensively characterized through an analytical study and simulation employing the finite element method COMSOL.
引用
收藏
页数:20
相关论文
共 33 条
[1]   Parabolic microlensed optical fiber for coupling efficiency improvement in single mode fiber [J].
Bouhafs, Zaied ;
Guessoum, Assia ;
Guermat, Abdelhak ;
Bouaziz, Djamila ;
Lecler, Sylvain ;
Demagh, Nacer-Eddine .
OPTICS CONTINUUM, 2022, 1 (05) :1218-1231
[2]   Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement [J].
Chen, W. P. ;
Wang, D. N. ;
Xu, Ben ;
Zhao, C. L. ;
Chen, H. F. .
SCIENTIFIC REPORTS, 2017, 7
[3]  
Chyad Radhi M., 2020, Journal of Physics: Conference Series, V1660, DOI [10.1088/1742-6596/1660/1/012052, 10.1088/1742-6596/1660/1/012052]
[4]   Chemical etching of concave cone fibre ends for core fibre alignment [J].
Demagh, NE ;
Guessoum, A ;
Aissat, H .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (01) :119-122
[5]   A Simple, Highly Sensitive Fiber Sensor for Simultaneous Measurement of Pressure and Temperature [J].
Fu, Dongying ;
Liu, Xiujuan ;
Shang, Jianyu ;
Sun, Weimin ;
Liu, Yongjun .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (13) :747-750
[6]   High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models [J].
Gang, Tingting ;
Hu, Manli ;
Rong, Qiangzhou ;
Qiao, Xueguang ;
Liang, Lei ;
Liu, Nan ;
Tong, Rongxin ;
Liu, Xiaobo ;
Bian, Ce .
SENSORS, 2016, 16 (12)
[7]   Fibre-optic temperature and pressure sensor based on a deformable concave micro-mirror [J].
Guermat, Abdelhak ;
Guessoum, Assia ;
Demagh, Nacer-Eddine ;
Zaboub, Monsef ;
Bouhafs, Zaied .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 270 :205-213
[8]   Simple air-gap fiber Fabry-Perot interferometers based on a fiber endface with Sn-microsphere overlay [J].
Lee, Cheng-Ling ;
Hung, Cheng-Hung ;
Li, Chai-Ming ;
You, Yan-Wun .
OPTICS COMMUNICATIONS, 2012, 285 (21-22) :4395-4399
[9]   Fiber optic Fabry-Perot sensor that can amplify ultrasonic wave for an enhanced partial discharge detection [J].
Li, Haoyong ;
Bu, Jian ;
Li, Wenli ;
Lv, Jiaming ;
Wang, Xiejun ;
Hu, Kejia ;
Yu, Yiting .
SCIENTIFIC REPORTS, 2021, 11 (01)
[10]   Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application [J].
Li, Zhe ;
Jia, Pinggang ;
Fang, Guocheng ;
Liang, Hao ;
Liang, Ting ;
Liu, Wenyi ;
Xiong, Jijun .
APPLIED OPTICS, 2018, 57 (08) :1738-1743