An investigation of non-noble metal electrodes for carbon dioxide electrolysis in molten lithium carbonate

被引:2
作者
Nuraini, Anafi [1 ]
Laasonen, Emma [2 ]
Ruuskanen, Vesa [1 ]
Niemela, Markku [1 ]
Koiranen, Tuomas [2 ]
Kauranen, Pertti [1 ]
Ahola, Jero [1 ]
机构
[1] Lappeenranta Univ Technol, POB 20, FI-53851 Lappeenranta, Finland
[2] POB 20, FI-53851 Lappeenranta, Finland
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2024年 / 19卷 / 03期
关键词
Carbon production; CO; 2; electrolysis; Molten Li 2 CO 3; Non -noble metal electrodes; Electrochemical performance; VALUE-ADDED CARBON; ELECTROCHEMICAL CONVERSION; HIGH-TEMPERATURE; CORROSION; CO2; SALT; ALLOYS; REDUCTION; NANOTUBES; BEHAVIOR;
D O I
10.1016/j.ijoes.2024.100499
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Carbon dioxide (CO2) emissions are a known cause of global warming, but at the same time, they constitute a potentially valuable source of carbon. Using a high-temperature electrolysis process in molten carbonate, CO2 can be transformed into carbon and oxygen. However, the corrosive ambient in molten carbonate necessitates resilient electrode material. To lower the cost, it is also important to select affordable electrodes. This study aimed to investigate the performance of non-noble metal electrodes specifically nickel, stainless steel, and Alloy X (a Ni-Cr-Fe-Mo alloy) in molten lithium carbonate (Li2CO3) at 750 circle C. Electrochemical performance was measured using step-wise constant current and cyclic voltammetry, and the yield was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The investigation revealed that nickel has a lower sum of cathodic and anodic overpotential and OER onset potential than stainless steel and Alloy X. Nickel electrodes produced spherical amorphous carbon; stainless steel electrodes generated amorphous carbon along with nanotubes; and Alloy X electrodes yielded amorphous carbon. The EDS confirmed the formation of carbon with metal contamination from Ni, Fe, and Cr. These results provide insight into the utilization of non-noble metal electrodes for CO2 electrolysis in Li2CO3.
引用
收藏
页数:10
相关论文
共 55 条
[1]  
[Anonymous], 2024, Technical Data Sheet Lupolen 4261AG BD
[2]   MWCNTs produced by electrolysis of molten carbonate: Characteristics of the cathodic products grown on galvanized steel and nickel chrome electrodes [J].
Arcaro, S. ;
Berutti, F. A. ;
Alves, A. K. ;
Bergmann, C. P. .
APPLIED SURFACE SCIENCE, 2019, 466 :367-374
[3]   ELECTROLYTIC REDUCTION AND ELLINGHAM DIAGRAMS FOR OXY-ANION SYSTEMS [J].
BARTLETT, HE ;
JOHNSON, KE .
CANADIAN JOURNAL OF CHEMISTRY, 1966, 44 (18) :2119-&
[4]   The corrosion behaviour of iron and chromium in molten (Li0.62K0.38)2CO3 [J].
Biedenkopf, P ;
Spiegel, M ;
Grabke, HJ .
ELECTROCHIMICA ACTA, 1998, 44 (04) :683-692
[5]   Synthesis of nanostructured graphite via molten salt reduction of CO2 and SO2 at a relatively low temperature [J].
Chen, Zhigang ;
Gu, Yuxing ;
Hu, Liangyou ;
Xiao, Wei ;
Mao, Xuhui ;
Zhu, Hua ;
Wang, Dihua .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (39) :20603-20607
[6]   Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition [J].
Deng, Bowen ;
Chen, Zhigang ;
Gao, Muxing ;
Song, Yuqiao ;
Zheng, Kaiyuan ;
Tang, Juanjuan ;
Xiao, Wei ;
Mao, Xuhui ;
Wang, Dihua .
FARADAY DISCUSSIONS, 2016, 190 :241-258
[7]   Durability of platinum coating anode in molten carbonate electrolysis cell [J].
Du, Kaifa ;
Yu, Rui ;
Gao, Muxing ;
Chen, Zhigang ;
Mao, Xuhui ;
Zhu, Hua ;
Wang, Dihua .
CORROSION SCIENCE, 2019, 153 :12-18
[8]   Electrochemical conversion of CO2 using different electrode materials in an Li-K molten salt system [J].
Eom, Seongyong ;
Na, Sangkyung ;
Ahn, Seongyool ;
Choi, Gyungmin .
ENERGY, 2022, 245
[9]   The role of alkaline-earth additives on the molten carbonate corrosion of 316L stainless steel [J].
Frangini, S. ;
Loreti, S. .
CORROSION SCIENCE, 2007, 49 (10) :3969-3987
[10]   Corrosion of inconel alloys for application as inert anodes in low-temperature molten carbonate electrolysis processes [J].
Frangini, S. ;
Paoletti, C. ;
Della Seta, L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (28) :14953-14961