Spatial dynamics of higher order rock-paper-scissors and generalisations

被引:1
作者
Griffin, Christopher [1 ]
Feng, Li [2 ]
Wu, Rongling [3 ,4 ]
机构
[1] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA
[2] Chinese Acad Fishery Sci, Fisheries Engn Inst, Beijing 100141, Peoples R China
[3] Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
[4] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
spatial evolutionary dynamics; higher order interactions; travelling waves; replicator dynamics; TRAVELING-WAVES; EVOLUTIONARY GAMES; PRISONERS-DILEMMA; PATTERNS; BIODIVERSITY; PROMOTES; BIFURCATIONS; POPULATIONS; COOPERATION; COMPETITION;
D O I
10.1088/1751-8121/ad3bf6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce and study the spatial replicator equation with higher order interactions and both infinite (spatially homogeneous) populations and finite (spatially inhomogeneous) populations. We show that in the special case of three strategies (rock-paper-scissors) higher order interaction terms allow travelling waves to emerge in non-declining finite populations. We show that these travelling waves arise from diffusion stabilisation of an unstable interior equilibrium point that is present in the aspatial dynamics. Based on these observations and prior results, we offer two conjectures whose proofs would fully generalise our results to all odd cyclic games, both with and without higher order interactions, assuming a spatial replicator dynamic. Intriguingly, these generalisations for N >= 5 strategies seem to require declining populations, as we show in our discussion.
引用
收藏
页数:19
相关论文
共 88 条
[1]   HAMILTONIAN EVOLUTIONARY GAMES [J].
Alishah, Hassan Najafi ;
Duarte, Pedro .
JOURNAL OF DYNAMICS AND GAMES, 2015, 2 (01) :33-49
[2]   A competitive network theory of species diversity [J].
Allesina, Stefano ;
Levine, Jonathan M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (14) :5638-5642
[3]  
[Anonymous], 1980, Lect. Notes Math., DOI DOI 10.1007/BFB0087009
[4]   High-order species interactions shape ecosystem diversity [J].
Bairey, Eyal ;
Kelsic, Eric D. ;
Kishony, Roy .
NATURE COMMUNICATIONS, 2016, 7
[5]   The physics of higher-order interactions in complex systems [J].
Battiston, Federico ;
Amico, Enrico ;
Barrat, Alain ;
Bianconi, Ginestra ;
Ferraz de Arruda, Guilherme ;
Franceschiello, Benedetta ;
Iacopini, Iacopo ;
Kefi, Sonia ;
Latora, Vito ;
Moreno, Yamir ;
Murray, Micah M. ;
Peixoto, Tiago P. ;
Vaccarino, Francesco ;
Petri, Giovanni .
NATURE PHYSICS, 2021, 17 (10) :1093-1098
[6]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[7]   Dispersal, landscape and travelling waves in cyclic vole populations [J].
Berthier, Karine ;
Piry, Sylvain ;
Cosson, Jean-Francois ;
Giraudoux, Patrick ;
Foltete, Jean-Christophe ;
Defaut, Regis ;
Truchetet, Denis ;
Lambin, Xavier .
ECOLOGY LETTERS, 2014, 17 (01) :53-64
[8]   HIGHER-ORDER INTERACTIONS IN ECOLOGICAL COMMUNITIES - WHAT ARE THEY AND HOW CAN THEY BE DETECTED [J].
BILLICK, I ;
CASE, TJ .
ECOLOGY, 1994, 75 (06) :1529-1543
[9]   INTEGRABLE DISCRETIZATIONS OF THE KDV EQUATION [J].
BOGOYAVLENSKY, OI .
PHYSICS LETTERS A, 1988, 134 (01) :34-38
[10]   A NOTE ON THE REPLICATOR EQUATION WITH EXPLICIT SPACE AND GLOBAL REGULATION [J].
Bratus, Alexander S. ;
Posvyanskii, Vladimir P. ;
Novozhilov, Artem S. .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2011, 8 (03) :659-676