A protein sequence-based deep transfer learning framework for identifying human proteome-wide deubiquitinase-substrate interactions

被引:8
作者
Liu, Yuan [1 ]
Li, Dianke [1 ,2 ]
Zhang, Xin [1 ]
Xia, Simin [1 ,3 ]
Qu, Yingjie [1 ]
Ling, Xinping [1 ,4 ]
Li, Yang [1 ]
Kong, Xiangren [1 ]
Zhang, Lingqiang [1 ]
Cui, Chun-Ping [1 ]
Li, Dong [1 ]
机构
[1] Beijing Inst Life, Beijing Proteome Res Ctr, Natl Ctr Prot Sci Beijing, State Key Lab Med Prote, Beijing 102206, Peoples R China
[2] China Agr Univ, Coll Biol Sci, State Key Lab Farm Anim Biotech Breeding, Beijing 100193, Peoples R China
[3] Anhui Med Univ, Sch Basic Med Sci, Hefei 230032, Peoples R China
[4] Hebei Univ, Coll Life Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
FOXP3; EXPRESSION; HEPATOCELLULAR-CARCINOMA; SEMANTIC SIMILARITY; CELLS; IDENTIFICATION; NETWORKS;
D O I
10.1038/s41467-024-48446-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein ubiquitination regulates a wide range of cellular processes. The degree of protein ubiquitination is determined by the delicate balance between ubiquitin ligase (E3)-mediated ubiquitination and deubiquitinase (DUB)-mediated deubiquitination. In comparison to the E3-substrate interactions, the DUB-substrate interactions (DSIs) remain insufficiently investigated. To address this challenge, we introduce a protein sequence-based ab initio method, TransDSI, which transfers proteome-scale evolutionary information to predict unknown DSIs despite inadequate training datasets. An explainable module is integrated to suggest the critical protein regions for DSIs while predicting DSIs. TransDSI outperforms multiple machine learning strategies against both cross-validation and independent test. Two predicted DUBs (USP11 and USP20) for FOXP3 are validated by "wet lab" experiments, along with two predicted substrates (AR and p53) for USP22. TransDSI provides new functional perspective on proteins by identifying regulatory DSIs, and offers clues for potential tumor drug target discovery and precision drug application. The specificity of protein deubiquitination relies on deubiquitinase-substrate interactions (DSIs). Here, authors leverage evolutionary information from the proteome to predict DSIs, even with an inadequate training dataset.
引用
收藏
页数:16
相关论文
共 72 条
[1]   The Gene Ontology knowledgebase in 2023 [J].
Aleksander, Suzi A. ;
Balhoff, James ;
Carbon, Seth ;
Cherry, J. Michael ;
Drabkin, Harold J. ;
Ebert, Dustin ;
Feuermann, Marc ;
Gaudet, Pascale ;
Harris, Nomi L. ;
Hill, David P. ;
Lee, Raymond ;
Mi, Huaiyu ;
Moxon, Sierra ;
Mungall, Christopher J. ;
Muruganugan, Anushya ;
Mushayahama, Tremayne ;
Sternberg, Paul W. ;
Thomas, Paul D. ;
Van Auken, Kimberly ;
Ramsey, Jolene ;
Siegele, Deborah A. ;
Chisholm, Rex L. ;
Fey, Petra ;
Aspromonte, Maria Cristina ;
Nugnes, Maria Victoria ;
Quaglia, Federica ;
Tosatto, Silvio ;
Giglio, Michelle ;
Nadendla, Suvarna ;
Antonazzo, Giulia ;
Attrill, Helen ;
dos Santos, Gil ;
Marygold, Steven ;
Strelets, Victor ;
Tabone, Christopher J. ;
Thurmond, Jim ;
Zhou, Pinglei ;
Ahmed, Saadullah H. ;
Asanitthong, Praoparn ;
Luna Buitrago, Diana ;
Erdol, Meltem N. ;
Gage, Matthew C. ;
Ali Kadhum, Mohamed ;
Li, Kan Yan Chloe ;
Long, Miao ;
Michalak, Aleksandra ;
Pesala, Angeline ;
Pritazahra, Armalya ;
Saverimuttu, Shirin C. C. ;
Su, Renzhi .
GENETICS, 2023, 224 (01)
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[5]   Scale-Free Networks: A Decade and Beyond [J].
Barabasi, Albert-Laszlo .
SCIENCE, 2009, 325 (5939) :412-413
[6]   UniProt: the Universal Protein Knowledgebase in 2023 [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Ahmad, Shadab ;
Alpi, Emanuele ;
Bowler-Barnett, Emily H. ;
Britto, Ramona ;
Cukura, Austra ;
Denny, Paul ;
Dogan, Tunca ;
Ebenezer, ThankGod ;
Fan, Jun ;
Garmiri, Penelope ;
Gonzales, Leonardo Jose da Costa ;
Hatton-Ellis, Emma ;
Hussein, Abdulrahman ;
Ignatchenko, Alexandr ;
Insana, Giuseppe ;
Ishtiaq, Rizwan ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Kandasaamy, Swaathi ;
Lock, Antonia ;
Luciani, Aurelien ;
Lugaric, Marija ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Mishra, Alok ;
Moulang, Katie ;
Nightingale, Andrew ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Raposo, Pedro ;
Rice, Daniel L. ;
Saidi, Rabie ;
Santos, Rafael ;
Speretta, Elena ;
Stephenson, James ;
Totoo, Prabhat ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Warner, Kate ;
Watkins, Xavier ;
Zellner, Hermann .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D523-D531
[7]   PROTAC targeted protein degraders: the past is prologue [J].
Bekes, Miklos ;
Langley, David R. ;
Crews, Craig M. .
NATURE REVIEWS DRUG DISCOVERY, 2022, 21 (03) :181-200
[8]   Computational solutions for omics data [J].
Berger, Bonnie ;
Peng, Jian ;
Singh, Mona .
NATURE REVIEWS GENETICS, 2013, 14 (05) :333-346
[9]   The BioGRID interaction database: 2017 update [J].
Chatr-aryamontri, Andrew ;
Oughtred, Rose ;
Boucher, Lorrie ;
Rust, Jennifer ;
Chang, Christie ;
Kolas, Nadine K. ;
O'Donnell, Lara ;
Oster, Sara ;
Theesfeld, Chandra ;
Sellam, Adnane ;
Stark, Chris ;
Breitkreutz, Bobby-Joe ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D369-D379
[10]   Harnessing big 'omics' data and AI for drug discovery in hepatocellular carcinoma [J].
Chen, Bin ;
Garmire, Lana ;
Calvisi, Diego F. ;
Chua, Mei-Sze ;
Kelley, Robin K. ;
Chen, Xin .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (04) :238-251