Localization of Triangulated Categories with Respect to Extension-Closed Subcategories

被引:1
作者
Ogawa, Yasuaki [1 ]
机构
[1] Kansai Univ, Fac Engn Sci, 3 Chome-3-35 Yamatecho, Suita, Osaka 5648680, Japan
基金
日本学术振兴会;
关键词
Verdier localization; Triangulated category; Extriangulated category; t-structure; Cotorsion pair; MODULE CATEGORIES; PAIRS;
D O I
10.1007/s10468-024-10272-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to develop a framework for localization theory of triangulated categories C, that is, from a given extension-closed subcategory N of C, we construct a natural extriangulated structure on C together with an exact functor Q : C -> (C) over tilde (N) satisfying a suitable universality, which unifies several phenomena. Precisely, a given subcategory N is thick if and only if the localization (C) over tilde (N) corresponds to a triangulated category. In this case, Q is nothing other than the usual Verdier quotient. Furthermore, it is revealed that (C) over tilde (N) is an exact category if and only if N satisfies a generating condition Cone(N, N) = C. Such an (abelian) exact localization (C) over tilde (N) provides a good understanding of some cohomological functors C -> Ab, e.g., the heart of t-structures on C and the abelian quotient of C by a cluster-tilting subcategory N.
引用
收藏
页码:1603 / 1640
页数:38
相关论文
共 45 条
[1]   General Heart Construction on a Triangulated Category (II): Associated Homological Functor [J].
Abe, Noriyuki ;
Nakaoka, Hiroyuki .
APPLIED CATEGORICAL STRUCTURES, 2012, 20 (02) :161-174
[2]  
[Anonymous], 1982, ANAL TOPOLOGY SINGUL
[3]  
[Anonymous], 1967, Calculus of fractions and homotopy theory
[4]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .1. RELATIVE HOMOLOGY AND HOMOLOGICALLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :2995-3031
[5]   Relative homological algebra and purity in triangulated categories [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2000, 227 (01) :268-361
[6]   Rigid objects, triangulated subfactors and abelian localizations [J].
Beligiannis, Apostolos .
MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) :841-883
[7]   The category of extensions and a characterisation of n-exangulated functors [J].
Bennett-Tennenhaus, Raphael ;
Haugland, Johanne ;
Sandoy, Mads Hustad ;
Shah, Amit .
MATHEMATISCHE ZEITSCHRIFT, 2023, 305 (03)
[8]   Transport of structure in higher homological algebra [J].
Bennett-Tennenhaus, Raphael ;
Shah, Amit .
JOURNAL OF ALGEBRA, 2021, 574 :514-549
[9]  
Buan AB, 2013, T AM MATH SOC, V365, P2845
[10]   From triangulated categories to module categories via localization II: calculus of fractions [J].
Buan, Aslak Bakke ;
Marsh, Bethany R. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 :152-170