共 20 条
[1]
Amjady N., Keynia F., Zareipour H., Wind power prediction by new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization, IEEE Trans. Sustainable Energy, 2, 3, pp. 265-276, (2011)
[2]
Chen N., Qian Z., Nabney I.T., Meng X., Wind power forecasts using Gaussian processes and numerical weather prediction, IEEE Transactions on Power Systems, 29, 2, pp. 656-665, (2014)
[3]
Chen X., Dong Z.Y., Meng K., Xu Y., Wong K.P., Ngan H.W., Electricity price forecasting with extreme learning machine and bootstrapping, IEEE Transactions on Power Systems, 27, 4, pp. 2055-2062, (2012)
[4]
Douak F., Melgani F., Benoudjit N., Kernel ridge regression with active learning for wind speed prediction, Applied Energy, 103, pp. 328-340, (2013)
[5]
Feng Z-k., Niu W-j., Tang Z-y., Jiang Z-q., Xu Y., Liu Y., Zhang H-r., Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization, Journal of Hydrology, 583, (2020)
[6]
Gu R., Chen J., Hong R., Wang H., Wu W., Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator, Measurement, 149, (2020)
[7]
Hu Q., Zhang S., Yu M., Xie Z., Short-term wind speed or power forecasting with heteroscedastic support vector regression, IEEE Transactions on Sustainable Energy, 7, 1, pp. 241-249, (2016)
[8]
Li L., Li Y., Zhou B., Wu Q., Shen X., Liu H., Gong Z., An adaptive time-resolution method for ultra-short-term wind power prediction, International Journal of Electrical Power & Energy Systems, 118, (2020)
[9]
Li T., Qian Z., He T., Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM, Complexity, 2020, pp. 1-20, (2020)
[10]
Li Z., Zang C., Zeng P., Yu H., Li H., Day-ahead hourly photovoltaic generation forecasting using extreme learning machine, IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 779-783, (2015)