Measuring gravity with milligram levitated masses

被引:19
作者
Fuchs, Tim M. [1 ]
Uitenbroek, Dennis G. [1 ]
Plugge, Jaimy [1 ]
van Halteren, Noud [1 ]
van Soest, Jean-Paul [1 ]
Vinante, Andrea [2 ]
Ulbricht, Hendrik [3 ]
Oosterkamp, Tjerk H. [1 ]
机构
[1] Leiden Univ, Leiden Inst Phys, POB 9504, NL-2300 RA Leiden, Netherlands
[2] Ist Foton & Nanotecnol, CNR & Fdn Bruno Kessler, I-38123 Povo, Trento, Italy
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
LIMITS; STATE;
D O I
10.1126/sciadv.adk2949
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gravity differs from all other known fundamental forces because it is best described as a curvature of space-time. For that reason, it remains resistant to unifications with quantum theory. Gravitational interaction is fundamentally weak and becomes prominent only at macroscopic scales. This means, we do not know what happens to gravity in the microscopic regime where quantum effects dominate and whether quantum coherent effects of gravity become apparent. Levitated mechanical systems of mesoscopic size offer a probe of gravity, while still allowing quantum control over their motional state. This regime opens the possibility of table-top testing of quantum superposition and entanglement in gravitating systems. Here, we show gravitational coupling between a levitated submillimeter-scale magnetic particle inside a type I superconducting trap and kilogram source masses, placed approximately half a meter away. Our results extend gravity measurements to low gravitational forces of attonewton and underline the importance of levitated mechanical sensors.
引用
收藏
页数:6
相关论文
共 41 条
[21]   Gravity Probe B: Final Results of a Space Experiment to Test General Relativity [J].
Everitt, C. W. F. ;
DeBra, D. B. ;
Parkinson, B. W. ;
Turneaure, J. P. ;
Conklin, J. W. ;
Heifetz, M. I. ;
Keiser, G. M. ;
Silbergleit, A. S. ;
Holmes, T. ;
Kolodziejczak, J. ;
Al-Meshari, M. ;
Mester, J. C. ;
Muhlfelder, B. ;
Solomonik, V. G. ;
Stahl, K. ;
Worden, P. W., Jr. ;
Bencze, W. ;
Buchman, S. ;
Clarke, B. ;
Al-Jadaan, A. ;
Al-Jibreen, H. ;
Li, J. ;
Lipa, J. A. ;
Lockhart, J. M. ;
Al-Suwaidan, B. ;
Taber, M. ;
Wang, S. .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[22]   Improved constraints on non-Newtonian forces at 10 microns [J].
Geraci, Andrew A. ;
Smullin, Sylvia J. ;
Weld, David M. ;
Chiaverini, John ;
Kapitulnik, Aharon .
PHYSICAL REVIEW D, 2008, 78 (02)
[23]   MARKOV-PROCESSES IN HILBERT-SPACE AND CONTINUOUS SPONTANEOUS LOCALIZATION OF SYSTEMS OF IDENTICAL PARTICLES [J].
GHIRARDI, GC ;
PEARLE, P ;
RIMINI, A .
PHYSICAL REVIEW A, 1990, 42 (01) :78-89
[24]   Levitodynamics: Levitation and control of microscopic objects in vacuum [J].
Gonzalez-Ballestero, C. ;
Aspelmeyer, M. ;
Novotny, L. ;
Quidant, R. ;
Romero-Isart, O. .
SCIENCE, 2021, 374 (6564) :168-+
[25]  
Oosterkamp TH, 2016, Arxiv, DOI arXiv:1401.0176
[26]   Testing the limits of quantum mechanics: motivation, state of play, prospects [J].
Leggett, AJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (15) :R415-R451
[27]   Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity [J].
Marletto, C. ;
Vedral, V. .
PHYSICAL REVIEW LETTERS, 2017, 119 (24)
[28]   A MODIFICATION OF THE NEWTONIAN DYNAMICS AS A POSSIBLE ALTERNATIVE TO THE HIDDEN MASS HYPOTHESIS [J].
MILGROM, M .
ASTROPHYSICAL JOURNAL, 1983, 270 (02) :365-370
[29]   On gravity's role in quantum state reduction [J].
Penrose, R .
GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (05) :581-600
[30]  
Pikovski I, 2015, NAT PHYS, V11, P668, DOI [10.1038/NPHYS3366, 10.1038/nphys3366]