Development of a machine learning model using electrocardiogramsignals to improve acute pulmonary embolism screening

被引:12
作者
Somani, Sulaiman S. [1 ]
Honarvar, Hossein [1 ,2 ]
Narula, Sukrit [3 ,4 ]
Landi, Isotta [1 ,2 ]
Lee, Shawn [5 ,6 ]
Khachatoorian, Yeraz [7 ]
Rehmani, Arsalan [5 ,6 ]
Kim, Andrew [7 ]
De Freitas, Jessica K. [2 ]
Teng, Shelly [1 ]
Jaladanki, Suraj [1 ]
Kumar, Arvind [1 ]
Russak, Adam [1 ,7 ]
Zhao, Shan P. [1 ,8 ]
Freeman, Robert [9 ,10 ]
Levin, Matthew A. [8 ]
Nadkarni, Girish N. [1 ,11 ]
Kagen, Alexander C. [12 ]
Argulian, Edgar [13 ]
Glicksberg, Benjamin S. [1 ,2 ]
机构
[1] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth, 770 Lexington Ave 15th, New York, NY 10065 USA
[2] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, 1 Gustave L Levy Pl, New York, NY 10029 USA
[3] David Braley Cardiac Vasc & Stroke Res Inst, Populat Hlth Res Inst, 20 Copeland Ave, Hamilton, ON L8L 2X2, Canada
[4] McMaster Univ, Dept Hlth Res Methods Evidence & Impact, 1280 Main St, Hamilton, ON L8S 4L8, Canada
[5] Icahn Sch Med Mt Sinai, Dept Cardiol, 1 Gustave L Levy Pl, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Dept Internal Med, 1 Gustave L Levy Pl, New York, NY 10029 USA
[7] Icahn Sch Med, Dept Anesthesiol Perioperat & Pain Med, 1 Gustave L Levy Pl, New York, NY 10029 USA
[8] Icahn Sch Med, Dept Anesthesiol Perioperat & Pain Med, 1 Gustave L Levy Pl, New York, NY 10029 USA
[9] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, 1 Gustave L Levy Pl, New York, NY 10029 USA
[10] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, 1 Gustave L Levy Pl, New York, NY 10029 USA
[11] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, 1 Gustave L Levy Pl, New York, NY 10029 USA
[12] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, 1 Gustave L Levy Pl, New York, NY 10029 USA
[13] Icahn Sch Med Mt Sinai, Mount Sinai Heart, 1 Gustave L Levy Pl, New York, NY 10029 USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2022年 / 3卷 / 01期
基金
美国国家卫生研究院;
关键词
Pulmonary embolism; Electrocardiogram; Machine learning; Deep learning; NEURAL-NETWORK; ARTIFICIAL-INTELLIGENCE; EMERGENCY-DEPARTMENT; MANAGEMENT; PREDICTION; DIAGNOSIS;
D O I
10.1093/ehjdh/ztab101
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Clinical scoring systems for pulmonary embolism (PE) screening have low specificity and contribute to computed tomography pulmonary angiogram (CTPA) overuse. We assessed whether deep learning models using an existing and routinely collected data modality, electrocardiogram (ECG) waveforms, can increase specificity for PE detection. Methods and results We create a retrospective cohort of 21 183 patients at moderate- to high suspicion of PE and associate 23 793 CTPAs (10.0% PE-positive) with 320 746 ECGs and encounter-level clinical data (demographics, comorbidities, vital signs, and labs). We develop three machine learning models to predict PE likelihood: an ECG model using only ECG waveform data, an EHR model using tabular clinical data, and a Fusion model integrating clinical data and an embedded representation of the ECG waveform. We find that a Fusion model [area under the receiver-operating characteristic curve (AUROC) 0.81 +/- 0.01] outperforms both the ECG model (AUROC 0.59 +/- 0.01) and EHR model (AUROC 0.65 +/- 0.01). On a sample of 100 patients from the test set, the Fusion model also achieves greater specificity (0.18) and performance (AUROC 0.84 +/- 0.01) than four commonly evaluated clinical scores: Wells' Criteria, Revised Geneva Score, Pulmonary Embolism Rule-Out Criteria, and 4-Level Pulmonary Embolism Clinical Probability Score (AUROC 0.50-0.58, specificity 0.00-0.05). The model is superior to these scores on feature sensitivity analyses (AUROC 0.66-0.84) and achieves comparable performance across sex (AUROC 0.81) and racial/ethnic (AUROC 0.77-0.84) subgroups. Conclusion Synergistic deep learning of ECG waveforms with traditional clinical variables can increase the specificity of PE detection in patients at least at moderate suspicion for PE. [GRAPHICS] .
引用
收藏
页码:56 / 66
页数:11
相关论文
共 36 条
  • [1] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [2] Baltru saitis T, 2017, arXiv
  • [3] Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support
    Banerjee, Imon
    Sofela, Miji
    Yang, Jaden
    Chen, Jonathan H.
    Shah, Nigam H.
    Ball, Robyn
    Mushlin, Alvin, I
    Desai, Manisha
    Bledsoe, Joseph
    Amrhein, Timothy
    Rubin, Daniel L.
    Zamanian, Roham
    Lungren, Matthew P.
    [J]. JAMA NETWORK OPEN, 2019, 2 (08)
  • [4] Trends in mortality related to pulmonary embolism in the European Region, 2000-15: analysis of vital registration data from the WHO Mortality Database
    Barco, Stefano
    Mahmoudpour, Seyed Hamidreza
    Valerio, Luca
    Klok, Frederikus A.
    Muenzel, Thomas
    Middeldorp, Saskia
    Ageno, Walter
    Cohen, Alexander T.
    Hunt, Beverley J.
    Konstantinides, Stavros, V
    [J]. LANCET RESPIRATORY MEDICINE, 2020, 8 (03) : 277 - 287
  • [5] Cohen SL, 2020, LANCET HAEMATOL, V7, pE247, DOI 10.1016/S2352-3026(19)30250-9
  • [6] Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) The TRIPOD Statement
    Collins, Gary S.
    Reitsma, Johannes B.
    Altman, Douglas G.
    Moons, Karel G. M.
    [J]. CIRCULATION, 2015, 131 (02) : 211 - 219
  • [7] Pulmonary embolism and deep vein thrombosis
    Goldhaber, Samuel Z.
    Bounameaux, Henri
    [J]. LANCET, 2012, 379 (9828) : 1835 - 1846
  • [8] Sub-segmental pulmonary embolism in three academic teaching hospitals: a review of management and outcomes
    Goy, J.
    Lee, J.
    Levine, O.
    Chaudhry, S.
    Crowther, M.
    [J]. JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2015, 13 (02) : 214 - 218
  • [9] Pulmonary embolism
    Huisman, Menno V.
    Barco, Stefano
    Cannegieter, Suzanne C.
    Le Gal, Gregoire
    Konstantinides, Stavros V.
    Reitsma, Pieter H.
    Rodger, Marc
    Noordegraaf, Anton Vonk
    Klok, Frederikus A.
    [J]. NATURE REVIEWS DISEASE PRIMERS, 2018, 4
  • [10] Clinical criteria to prevent unnecessary diagnostic testing in emergency department patients with suspected pulmonary embolism
    Kline, JA
    Mitchell, AM
    Kabrhel, C
    Richman, PB
    Courtney, DM
    [J]. JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2004, 2 (08) : 1247 - 1255