Automated osteoporosis classification and T-score prediction using hip radiographs via deep learning algorithm

被引:3
作者
Chen, Yu-Pin [1 ,2 ]
Chan, Wing P. [3 ,4 ]
Zhang, Han-Wei [5 ,6 ,7 ,8 ]
Tsai, Zhi-Ren [9 ,10 ,11 ]
Peng, Hsiao-Ching [5 ]
Huang, Shu-Wei [12 ]
Jang, Yeu-Chai [13 ]
Kuo, Yi-Jie [1 ,2 ]
机构
[1] Taipei Med Univ, Wan Fang Hosp, Dept Orthoped, 11,Sec 3,Xinglong Rd, Taipei 11696, Taiwan
[2] Taipei Med Univ, Coll Med, Sch Med, Dept Orthoped, Taipei, Taiwan
[3] Taipei Med Univ, Wan Fang Hosp, Dept Radiol, Taipei City, Taiwan
[4] Taipei Med Univ, Coll Med, Sch Med, Dept Radiol, Taipei City, Taiwan
[5] Biomed Corp, New Taipei City, Taiwan
[6] China Med Univ, Program Aging, Taichung, Taiwan
[7] Natl Hlth Res Inst, Inst Populat Hlth Sci, Taipei, Miaoli Cty, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Inst Elect & Control Engn, Dept Elect & Comp Engn, Hsinchu, Hsinchu Cty, Taiwan
[9] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[10] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[11] Asia Univ, Ctr Precis Med Res, Taichung, Taiwan
[12] Natl Taitung Univ, Dept Appl Sci, Taitung City, Taitung Cty, Taiwan
[13] Taipei Med Univ, Wan Fang Hosp, Dept Obstet & Gynecol, Taipei, Taiwan
关键词
deep learning; neural network; osteoporosis; radiographs; T-score; RAY ABSORPTIOMETRY DXA; SINGH INDEX;
D O I
10.1177/1759720X241237872
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Despite being the gold standard for diagnosing osteoporosis, dual-energy X-ray absorptiometry (DXA) is an underutilized screening tool for osteoporosis. Objectives: This study proposed and validated a controllable feature layer of a convolutional neural network (CNN) model with a preprocessing image algorithm to classify osteoporosis and predict T-score on the proximal hip region via simple hip radiographs. Design: This was a single-center, retrospective study. Methods: An image dataset of 3460 unilateral hip images from 1730 patients (age >= 50 years) was retrospectively collected with matched DXA assessment for T-score for the targeted proximal hip regions to train (2473 unilateral hip images from 1430 patients) and test (497 unilateral hip images from 300 patients) the proposed CNN model. All images were processed with a fully automated CNN model, X1AI-Osteo. Results: The proposed screening tool illustrated a better performance (sensitivity: 97.2%; specificity: 95.6%; positive predictive value: 95.7%; negative predictive value: 97.1%; area under the curve: 0.96) than the open-sourced CNN models in predicting osteoporosis. Moreover, when combining variables, including age, body mass index, and sex as features in the training metric, there was high consistency in the T-score on the targeted hip regions between the proposed CNN model and the DXA (r = 0.996, p < 0.001). Conclusion: The proposed CNN model may identify osteoporosis and predict T-scores on the targeted hip regions from simple hip radiographs with high accuracy, highlighting the future application for population-based opportunistic osteoporosis screening with low cost and high adaptability for a broader population at risk.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Declining incidence of hip fractures and the extent of use of anti-osteoporotic therapy in Denmark 1997-2006 [J].
Abrahamsen, B. ;
Vestergaard, P. .
OSTEOPOROSIS INTERNATIONAL, 2010, 21 (03) :373-380
[2]  
Acharya T, 2005, IMAGE PROCESSING: PRINCIPLES AND APPLICATIONS, P1, DOI 10.1002/0471745790
[3]   The role of DXA bone density scans in the diagnosis and treatment of osteoporosis [J].
Blake, Glen M. ;
Fogelman, Ignac .
POSTGRADUATE MEDICAL JOURNAL, 2007, 83 (982) :509-517
[4]   Optimal fuzzy tracking control of uncertain nonlinear systems based on genetic algorithms and fuzzy Lyapunov function [J].
Chang, Yau-Zen ;
Tsai, Zhi-Ren ;
Hwang, Jiing-Dong ;
Lee, Jye .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (01) :121-132
[5]  
Chen YP., 2021, Ther Adv Musculoskelet Dis, V13
[6]   Prognostic Factors for Mortality, Activity of Daily Living, and Quality of Life in Taiwanese Older Patients within 1 Year Following Hip Fracture Surgery [J].
Chiang, Ming-Hsiu ;
Huang, Yu-Yun ;
Kuo, Yi-Jie ;
Huang, Shu-Wei ;
Jang, Yeu-Chai ;
Chu, Fu-Ling ;
Chen, Yu-Pin .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (01)
[7]   Predictors of In-Hospital Mortality in Older Adults Undergoing Hip Fracture Surgery: A Case-Control Study [J].
Chiang, Ming-Hsiu ;
Lee, Huan-Ju ;
Kuo, Yi-Jie ;
Chien, Pei-Chun ;
Chang, Wei-Chun ;
Wu, Yueh ;
Chen, Yu-Pin .
GERIATRIC ORTHOPAEDIC SURGERY & REHABILITATION, 2021, 12
[8]   Screening for Osteoporosis to Prevent Fractures US Preventive Services Task Force Recommendation Statement [J].
Curry, Susan J. ;
Krist, Alex H. ;
Owens, Douglas K. ;
Barry, Michael J. ;
Caughey, Aaron B. ;
Davidson, Karina W. ;
Doubeni, Chyke A. ;
Epling, John W., Jr. ;
Kemper, Alex R. ;
Kubik, Martha ;
Landefeld, Seth ;
Mangione, Carol M. ;
Phipps, Maureen G. ;
Pignone, Michael ;
Silverstein, Michael ;
Simon, Melissa A. ;
Tseng, Chien-Wen ;
Wong, John B. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (24) :2521-2531
[9]   The geographic availability and associated utilization of dual-energy X-ray absorptiometry (DXA) testing among older persons in the United States [J].
Curtis, J. R. ;
Laster, A. ;
Becker, D. J. ;
Carbone, L. ;
Gary, L. C. ;
Kilgore, M. L. ;
Matthews, R. S. ;
Morrisey, M. A. ;
Saag, K. G. ;
Tanner, S. B. ;
Delzell, E. .
OSTEOPOROSIS INTERNATIONAL, 2009, 20 (09) :1553-1561
[10]   Bone Mineral Measurements [J].
Doroudinia, Abtin ;
Colletti, Patrick M. .
CLINICAL NUCLEAR MEDICINE, 2015, 40 (08) :647-657