Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries

被引:48
作者
Wei, Ran [1 ]
Chen, Shaojie [1 ]
Gao, Tianyi [1 ]
Liu, Wei [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
来源
NANO SELECT | 2021年 / 2卷 / 12期
基金
中国国家自然科学基金;
关键词
fabrication; garnet; high safety; oxide electrolytes; solid state batteries; IONIC-CONDUCTIVITY; CERAMIC ELECTROLYTES; RECENT PROGRESS; HIGH-ENERGY; METAL; TEMPERATURE; MICROSTRUCTURE; PERFORMANCE; MECHANISMS; PHASE;
D O I
10.1002/nano.202100110
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solid electrolyte is a key component for all-solid-state lithium battery that is one of the most promising technologies for next-generation energy storages. This review describes the challenges and strategies, preparation methods and outlook of oxide solid electrolytes for solid-state lithium batteries. The general strategies on enhancing ionic conductivity of oxide solid electrolytes and reducing impedance interface are first summarized. We then introduce the basic structures of typical oxide electrolytes. The preparation technologies are also introduced for oxide electrolytes with various dimensions including bulk, thin film and fiber. In addition, the integration of oxide electrolytes with electrode materials is highlighted. In the last part, an outlook for the future development of oxide electrolytes towards practical applications is provided.
引用
收藏
页码:2256 / 2274
页数:19
相关论文
共 147 条
[1]   Investigation on spin coated LLTO thin film nano-electrolytes for rechargeable lithium ion batteries [J].
Abhilash, K. P. ;
Sivaraj, P. ;
Selvin, P. Christopher ;
Nalini, B. ;
Somasundaram, K. .
CERAMICS INTERNATIONAL, 2015, 41 (10) :13823-13829
[2]   Investigations on pure and Ag doped lithium lanthanum titanate (LLTO) nanocrystalline ceramic electrolytes for rechargeable lithium-ion batteries [J].
Abhilash, K. P. ;
Selvin, P. Christopher ;
Nalini, B. ;
Nithyadharseni, P. ;
Pillai, B. C. .
CERAMICS INTERNATIONAL, 2013, 39 (02) :947-952
[3]   A New Approach to Develop Safe All-Inorganic Monolithic Li-Ion Batteries [J].
Aboulaich, Abelmaula ;
Bouchet, Renaud ;
Delaizir, Gaelle ;
Seznec, Vincent ;
Tortet, Laurence ;
Morcrette, Mathieu ;
Rozier, Patrick ;
Tarascon, Jean-Marie ;
Viallet, Virginie ;
Dolle, Mickael .
ADVANCED ENERGY MATERIALS, 2011, 1 (02) :179-183
[4]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[5]   Air stability of tetragonal solid-state electrolyte Li7La3Zr2O12 [J].
Aleksandrov, D. S. ;
Popovich, A. A. ;
Qingsheng, W. ;
Novikov, P. A. .
MATERIALS TODAY-PROCEEDINGS, 2020, 30 :583-586
[6]   Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors [J].
Alexander, George Vadakkethalakel ;
Patra, Srabani ;
Valiyaveetil, Sona ;
Raj, Sobhan ;
Sugumar, Manoj Krishna ;
Din, Mir Mehraj Ud ;
Murugan, Ramaswamy .
JOURNAL OF POWER SOURCES, 2018, 396 :764-773
[7]  
Allena J. W. J. L., 2015, J. Power Sources, V206, P315
[8]   A wide-ranging review on Nasicon type materials [J].
Anantharamulu, N. ;
Rao, K. Koteswara ;
Rambabu, G. ;
Kumar, B. Vijaya ;
Radha, Velchuri ;
Vithal, M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (09) :2821-2837
[9]   High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5) [J].
Arbi, K. ;
Bucheli, W. ;
Jimenez, R. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1477-1484
[10]  
Arnold W., 2020, J. Power Sources, P464